51 research outputs found

    ํ•ด์šด๋ฌผ๋ฅ˜์—์„œ์˜ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ํšจ๊ณผ ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2022.2. ๋ฌธ์ผ๊ฒฝ.์ปจํ…Œ์ด๋„ˆ ํ™” ์ดํ›„๋กœ ํ•ด์ƒ ๋ฌผ๋ฅ˜๋Š” ํญ๋ฐœ์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์˜€๊ณ  ์„ธ๊ณ„ํ™”์™€ ์‚ฐ์—… ๋ฐœ์ „์„ ์„ ๋„ํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ ๋ฌด์—ญ๋Ÿ‰์˜ ์ฆ๊ฐ€์™€ ๋น„๋ก€ํ•˜์—ฌ ์ˆ˜์ถœ์ž… ๋ถˆ๊ท ํ˜•์œผ๋กœ ์ธํ•œ ์ปจํ…Œ์ด๋„ˆ์˜ ๋ถˆ๊ท ํ˜• ๋ฌธ์ œ๋„ ์‹ฌํ™”๋˜์—ˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ์ž๋“ค์˜ ๋…ธ๋ ฅ์ด ์žˆ์—ˆ๊ณ , ๊ทธ ์ค‘ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๋ผ๋Š” ์ƒˆ๋กœ์šด ๊ฐœ๋…์˜ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์•„์ง ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๋Š” ์ƒ์šฉํ™” ์ดˆ๊ธฐ ๋‹จ๊ณ„์ด๋ฉฐ, ์ด๋ฅผ ํ™œ์šฉํ•œ ์—ฌ๋Ÿฌ ํšจ๊ณผ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ๋ถ€์กฑํ•œ ์‹ค์ •์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ๋„์ž…๋˜์—ˆ์„ ๋•Œ ๋ฏธ์น  ์ˆ˜ ์žˆ๋Š” ์˜ํ–ฅ๊ณผ ๊ทธ ํšจ๊ณผ์— ๋Œ€ํ•ด ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋จผ์ € ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ํฌ๋ ˆ์ธ ํ™œ๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ณ , ์ „์—ญ์  ๊ด€์ ์œผ๋กœ ํฌ๋ ˆ์ธ ํ™œ๋™์„ ์ค„์ผ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ ์œก์ƒ์—์„œ์˜ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ์ ์šฉ์ด ํ•ด์ƒ๊ณผ๋Š” ๋‹ค๋ฅด๋‹ค๋Š” ์ ์— ์ฃผ๋ชฉํ•˜์—ฌ ๊ทธ ํšจ๊ณผ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ 2008 ๊ธˆ์œต์œ„๊ธฐ์™€ COVID-19 ์ดํ›„์— ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ํ•ด์šด๋ฌผ๋ฅ˜์˜ ๊ฐ์ข… ๋ณ€๋™ํ•˜๋Š” ์ƒํ™ฉ ํ•˜์—์„œ์˜ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ํšจ๊ณผ์— ๋Œ€ํ•ด ์ƒˆ๋กœ์šด ํ†ต์ฐฐ์„ ์ œ๊ณตํ•˜์˜€๋‹ค. 1์žฅ์—์„œ๋Š” ๊ฐ„๋‹จํ•˜๊ฒŒ ์ปจํ…Œ์ด๋„ˆํ™”์™€ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ์— ๋Œ€ํ•ด ์„ค๋ช…ํ•˜๊ณ  ๋ฌธ์ œ๋ฅผ ์ฃผ๋ชฉํ•˜๊ฒŒ ๋œ ์ด์œ ์™€ ๊ทธ ์„ฑ๊ณผ๋ฅผ ์„œ์ˆ ํ•˜์˜€๋‹ค. 2์žฅ์—์„œ๋Š” ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ๋„์ž…๋จ์— ๋”ฐ๋ผ ์ƒ๊ธธ ์ˆ˜ ์žˆ๋Š” โ€˜์ƒ๋‹จ ์ ์žฌ ๊ทœ์น™โ€™์ด ์ ์šฉ๋˜์—ˆ์„ ๋•Œ์˜ ํฌ๋ ˆ์ธ ํ™œ๋™์˜ ๋ณ€ํ™”๋ฅผ ์‚ดํŽด๋ณด๊ณ  ์ „์—ญ์  ์ตœ์ ํ™”๊ฐ€ ์ง€์—ญ์  ์ตœ์ ํ™”๋ณด๋‹ค ํšจ๊ณผ์ ์ž„์„ ๋ณด์˜€๋‹ค. ๋”๋ถˆ์–ด ์ „์—ญ์  ์ตœ์ ํ™”๋ฅผ ๋„์ž…ํ•˜์˜€์„ ๋•Œ ์ง๋ฉดํ•  ์ˆ˜ ์žˆ๋Š” ๋น„์šฉ ๋ถ„๋ฐฐ ๋ฌธ์ œ์— ๋Œ€ํ•ด์„œ๋„ ์กฐ๋งํ•˜์—ฌ ๊ทธ ํ•ด๊ฒฐ์ฑ…์„ ์ œ์‹œํ•˜์˜€๋‹ค. 3์žฅ์—์„œ๋Š” ์œก์ƒ์—์„œ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ๊ฐ€ ์ˆ˜์†ก๊ณต๊ฐ„์„ ์ค„์—ฌ์ฃผ๋Š” ์žฅ์  ์™ธ์— ๊ฒฝ๋กœ๋ฅผ ๋ฐ”๊พธ๋Š” ํšจ๊ณผ๊ฐ€ ์กด์žฌํ•จ์„ ๋ณด์ด๊ณ , ๋‹ค์–‘ํ•œ ์‹œ๋‚˜๋ฆฌ์˜ค์™€ ์ •์ฑ…์— ๋”ฐ๋ผ ๊ทธ ํšจ๊ณผ๊ฐ€ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”ํ•˜๋Š”์ง€์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. 4์žฅ์—์„œ๋Š” ์ฆ๊ฐ€ํ•˜๋Š” ๋‹ค์–‘ํ•œ ๋ณ€๋™์ƒํ™ฉ ๊ฐ๊ฐ์— ๋Œ€ํ•ด ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ์˜ ํšจ๊ณผ์— ๋Œ€ํ•ด ๋ถ„์„ํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ† ๋Œ€๋กœ ๊ฐ ์ƒํ™ฉ์— ๋งž๋Š” ์ตœ์  ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ ๊ฐœ์ˆ˜๋ฅผ ๋„์ถœํ•˜๊ณ  ์ž„๋Œ€ ์ •์ฑ…์„ ํ†ตํ•ด ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ํ†ต์ฐฐ์„ ๋„์ถœํ•˜์˜€๋‹ค. 5์žฅ์—์„œ๋Š” ๋ณธ ๋…ผ๋ฌธ์˜ ๊ฒฐ๋ก ๊ณผ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉ์•ˆ์— ๋Œ€ํ•ด ์„œ์ˆ ํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•˜๋Š” ๋ฌธ์ œ์™€ ๊ทธ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์€ ํ•™์ˆ ์  ๋ฐ ์‚ฐ์—…์ ์œผ๋กœ ์˜๋ฏธ๊ฐ€ ์žˆ๋‹ค. ํ•™๊ณ„์—๋Š” ์‹ค์ œ ์กด์žฌํ•˜๋Š” ํ˜„์žฅ์˜ ๋ฌธ์ œ๋“ค์„ ์ œ์‹œํ•˜๊ณ  ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์‚ฐ์—…๊ณ„์—๋Š” ์‹ ๊ธฐ์ˆ ์ธ ์ ‘์ด์‹ ์ปจํ…Œ์ด๋„ˆ์˜ ๋„์ž…์— ๋”ฐ๋ผ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์— ๋Œ€ํ•ด ์ •๋Ÿ‰ํ™” ๋ฐ ๋ชจํ˜•ํ™”๋ฅผ ํ†ตํ•œ ํ•ด๊ฒฐ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์„ ํ†ตํ•ด ์‚ฐ์—…์˜ ๋ฐœ์ „๊ณผ ํ•™๋ฌธ์˜ ๋ฐœ์ „์ด ํ•จ๊ป˜ ์ด๋ฃจ์–ด์งˆ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€ํ•œ๋‹ค.After containerization, maritime logistics experienced the substantial growth of trade volumes and led to globalization and industrial development. However, in proportion to the increase in the volume, the degree of container imbalance also intensified due to the disparity between importing and exporting sizes at ports in different continents. A group of researchers is digging into resolving this ongoing challenge, and a new concept of a container, called a foldable container, has been proposed. Nevertheless, foldable containers are still in the early stage of commercialization, and research on the various effects of using foldable containers seems insufficient yet. This dissertation considers the possible effects of the introduction of foldable containers. First, we analyze the effect of foldable containers on crane operation and reduce shifts from a global perspective. Second, the effect of using foldable containers in hinterland areas was analyzed by noting that the application of foldable containers on land was different from that of the sea. Finally, we provided new insights into the foldable container under plausible dynamic situations in the shipping industry during the COVID-19 and logistics that have increased since the 2008 financial crisis. A brief explanation of containerization and foldable containers is introduced in Chapter 1, along with the dissertation's motivations, contributions, and outlines. Chapter 2 examines changes in crane operation when the 'top stowing rule' that can be treated with foldable containers is applied and shows that global optimization is more effective than local optimization. In addition, we suggested the cost-sharing method to deal with fairness issues for additional costs between ports when the global optimization method is fully introduced. Chapter 3 shows that foldable containers in the hinterland have the effect of changing routes in addition to reducing transportation space and analyzes how the results change according to various scenarios and policies. Chapter 4 analyzes the effectiveness of foldable containers for different dynamic situations. Moreover, the managerial insight was derived that the optimal number of foldable containers suitable for each situation can be obtained and responded to leasing policies. Chapter 5 describes the conclusions of this dissertation and discusses future research. The problem definition and solution methods proposed in this dissertation can be seen as meaningful in both academic and industrial aspects. For academia, we presented real-world problems in the field and suggested ways to solve problems effectively. For industry, we offered solutions through quantification and modeling for real problems related to foldable containers. We expect that industrial development and academic achievement can be achieved together through this dissertation.Chapter 1 Introduction 1 1.1 Containerization and foldable container 1 1.2 Research motivations and contributions 3 1.3 Outline of the dissertation 6 Chapter 2 Efficient stowage plan with loading and unloading operations for shipping liners using foldable containers and shift cost-sharing 7 2.1 Introduction 7 2.2 Literature review 10 2.3 Problem definition 15 2.4 Mathematical model 19 2.4.1 Mixed-integer programming model 19 2.4.2 Cost-sharing 24 2.5 Computational experiment and analysis 26 2.6 Conclusions 34 Chapter 3 Effects of using foldable containers in hinterland areas 36 3.1 Introduction 36 3.2 Single depot repositioning problem 39 3.2.1 Problem description 40 3.2.2 Mathematical formulation of the single depot repositioning problem 42 3.2.3 Effects of foldable containers 45 3.3 Multi-depot repositioning problem 51 3.4 Computational experiments 56 3.4.1 Experimental design for the SDRP 57 3.4.2 Experimental results for the SDRP 58 3.4.3 Major and minor effects with the single depot repositioning problem 60 3.5 Conclusions 65 Chapter 4 Effect of foldable containers in dynamic situation 66 4.1 Introduction 66 4.2 Problem description 70 4.3 Mathematical model 73 4.4 Computational experiments 77 4.4.1 Overview 77 4.4.2 Experiment results 79 4.5 Conclusions 88 Chapter 5 Conclusion and future research 90 Bibliography 94 ๊ตญ๋ฌธ์ดˆ๋ก 99๋ฐ•

    ๊ณต์ปจํ…Œ์ด๋„ˆ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ํšจ์œจ์ ์ธ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021. 2. ๋ฌธ์ผ๊ฒฝ.Due to a remarkable surge in global trade volumes led by maritime transportation, shipping companies should make a great effort in managing their container flows especially in case of carrier-owned containers. To do so, they comprehensively implement empty container management strategies and accelerate the flows in a cost- and time-efficient manner to minimize total relevant costs while serving the maximal level of customers demands. However, many critical issues in container flows universally exist due to high uncertainty in reality and hinder the establishment of an efficient container supply chain. In this dissertation, we fully discuss such issues and provide mathematical models along with specific solution procedures. Three types of container supply chain are presented in the following: (i) a two-way four-echelon container supply chain; (ii) a laden and empty container supply chain under decentralized and centralized policies; (iii) a reliable container supply chain under disruption. These models explicitly deal with high risks embedded in a container supply chain and their computational experiments offer underlying managerial insights for the management in shipping companies. For (i), we study empty container management strategy in a two-way four-echelon container supply chain for bilateral trade between two countries. The strategy reduces high maritime transportation costs and long delivery times due to transshipment. The impact of direct shipping is investigated to determine the number of empty containers to be repositioned among selected ports, number of leased containers, and route selection to satisfy the demands for empty and laden containers for exporters and importers in two regions. A hybrid solution procedure based on accelerated particle swarm optimization and heuristic is presented, and corresponding results are compared. For (ii), we introduce the laden and empty container supply chain model based on three scenarios that differ with regard to tardiness in the return of empty containers and the decision process for the imposition of fees with the goal of determining optimal devanning times. The effectiveness of each type of policy - centralized versus decentralized - is determined through computational experiments that produce key performance measures including the on-time return ratio. Useful managerial insights on the implementation of these polices are derived from the results of sensitivity analyses and comparative studies. For (iii), we develop a reliability model based on container network flow while also taking into account expected transportation costs, including street-turn and empty container repositioning costs, in case of arc- and node-failures. Sensitivity analyses were conducted to analyze the impact of disruption on container supply chain networks, and a benchmark model was used to determine disruption costs. More importantly, some managerial insights on how to establish and maintain a reliable container network flow are also provided.ํ•ด์ƒ ์ˆ˜์†ก์ด ์ฃผ๋„ํ•จ์œผ๋กœ์จ ์ „ ์„ธ๊ณ„ ๋ฌด์—ญ๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํšŒ์‚ฌ ์†Œ์œ  ์ปจํ…Œ์ด๋„ˆ๋Š” ์ปจํ…Œ์ด๋„ˆ ํ๋ฆ„์„ ๊ด€๋ฆฌํ•˜๋Š” ๋ฐ ๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์—ฌ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ด€๋ฆฌ ์ „๋žต์„ ํฌ๊ด„์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ˆ˜์†ก ๋น„์šฉ ๋ฐ ์‹œ๊ฐ„ ์ ˆ๊ฐ ๋ฐฉ์‹์œผ๋กœ ์ปจํ…Œ์ด๋„ˆ ํ๋ฆ„์„ ์›ํ™œํžˆ ํ•˜์—ฌ ๊ด€๋ จ ์ด๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋™์‹œ์— ๊ณ ๊ฐ์˜ ์ˆ˜์š”๋ฅผ ์ตœ๋Œ€ํ•œ ์ถฉ์กฑํ•˜๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์‹ค์—์„œ๋Š” ๋†’์€ ๋ถˆํ™•์‹ค์„ฑ ๋•Œ๋ฌธ์— ์ปจํ…Œ์ด๋„ˆ ํ๋ฆ„์— ๋Œ€ํ•œ ๋งŽ์€ ์ฃผ์š”ํ•œ ์ด์Šˆ๊ฐ€ ๋ณดํŽธ์ ์œผ๋กœ ์กด์žฌํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง ๊ตฌ์ถ•์„ ๋ฐฉํ•ดํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ด์Šˆ์— ๋Œ€ํ•ด ์ „๋ฐ˜์ ์œผ๋กœ ๋…ผ์˜ํ•˜๊ณ  ์ ์ ˆํ•œ ํ•ด๋ฒ•๊ณผ ํ•จ๊ป˜ ์ˆ˜๋ฆฌ ๋ชจํ˜•์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์„ ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ € (i) ์–‘๋ฐฉํ–ฅ ๋„ค ๋‹จ๊ณ„ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง, (ii) ๋ถ„๊ถŒํ™” ๋ฐ ์ค‘์•™ ์ง‘์ค‘ํ™” ์ •์ฑ…์— ๋”ฐ๋ฅธ ์ โˆ™๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง; ๊ทธ๋ฆฌ๊ณ  (iii) disruption ์ƒํ™ฉ ์†์—์„œ ์‹ ๋ขฐ์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ์„ธ ๊ฐ€์ง€ ๋ชจํ˜•์€ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์— ๋‚ด์žฌ ๋œ ๋†’์€ ์œ„ํ—˜์„ ์ง์ ‘ ๋‹ค๋ฃจ๋ฉฐ ๊ณ„์‚ฐ ์‹คํ—˜์€ ํ•ด์šด ํšŒ์‚ฌ์˜ ๊ฒฝ์˜์ง„์ด๋‚˜ ๊ด€๊ณ„์ž๋ฅผ ์œ„ํ•ด ์ฃผ์š”ํ•œ ๊ด€๋ฆฌ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. (i)์˜ ๊ฒฝ์šฐ, ๋‘ ์ง€์—ญ ๊ฐ„ ์–‘์ž ๋ฌด์—ญ์„ ์œ„ํ•œ ์–‘๋ฐฉํ–ฅ ๋„ค ๋‹จ๊ณ„ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์—์„œ ๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ด€๋ฆฌ ์ „๋žต์„ ์—ฐ๊ตฌํ•œ๋‹ค. ์ด ์ „๋žต์€ ํ™˜์ ์œผ๋กœ ์ธํ•œ ๋†’์€ ํ•ด์ƒ ์šด์†ก ๋น„์šฉ๊ณผ ๊ธด ๋ฐฐ์†ก ์‹œ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์งํ•ญ ์ˆ˜์†ก์˜ ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•˜์—ฌ ์„ ํƒ๋œ ํ•ญ๊ตฌ ์ค‘ ์žฌ๋ฐฐ์น˜ ํ•  ๊ณต ์ปจํ…Œ์ด๋„ˆ ์ˆ˜, ์ž„๋Œ€ ์ปจํ…Œ์ด๋„ˆ ์ˆ˜, ๋‘ ์ง€์—ญ์˜ ์ˆ˜์ถœ์—…์ž์™€ ์ˆ˜์ž…์—…์ž์˜ ์ โˆ™๊ณต ์ปจํ…Œ์ด๋„ˆ ๋Œ€ํ•œ ์ˆ˜์š”๋ฅผ ๋งŒ์กฑํ•˜๊ธฐ ์œ„ํ•œ ๊ฒฝ๋กœ ์„ ํƒ์„ ๊ฒฐ์ •ํ•˜๊ฒŒ ๋œ๋‹ค. APSO ๋ฐ ํœด๋ฆฌ์Šคํ‹ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ•ด๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ ๋น„๊ต ์‹คํ—˜์„ ํ•˜์˜€๋‹ค. (ii)์˜ ๊ฒฝ์šฐ ์ตœ์  devanning time ๊ฒฐ์ •์„ ๋ชฉํ‘œ๋กœ ๊ณต ์ปจํ…Œ์ด๋„ˆ์˜ ๋ฐ˜ํ™˜ ์ง€์—ฐ๊ณผ ํ•ด๋‹น ์ˆ˜์ˆ˜๋ฃŒ ๋ถ€๊ณผ ๊ฒฐ์ • ํ”„๋กœ์„ธ์Šค์™€ ๊ด€๋ จํ•˜์—ฌ ์„œ๋กœ ๋‹ค๋ฅธ ์„ธ ๊ฐ€์ง€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ โˆ™๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง ๋ชจํ˜•์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ ์œ ํ˜•์˜ ์ •์ฑ…์ (๋ถ„๊ถŒํ™” ๋ฐ ์ค‘์•™ ์ง‘์ค‘ํ™”) ํšจ๊ณผ๋Š” ์ •์‹œ ๋ฐ˜ํ™˜์œจ์„ ํฌํ•จํ•œ ์ฃผ์š” ์„ฑ๋Šฅ ์ธก์ •์„ ๊ณ ๋ คํ•˜๋Š” ๊ณ„์‚ฐ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒฐ์ •๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •์ฑ… ์‹คํ–‰์— ๋Œ€ํ•œ ์œ ์šฉํ•œ ๊ด€๋ฆฌ ์ธ์‚ฌ์ดํŠธ๋Š” ๋ฏผ๊ฐ๋„ ๋ถ„์„ ๋ฐ ๋น„๊ต ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ์—์„œ ๋„์ถœํ•œ๋‹ค. (iii)์˜ ๊ฒฝ์šฐ, ๋ณธ ๋…ผ๋ฌธ์€ ์ปจํ…Œ์ด๋„ˆ ๋„คํŠธ์›Œํฌ ํ๋ฆ„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์‹ ๋ขฐ์„ฑ ๋ชจํ˜•์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋™์‹œ์— ์•„ํฌ ๋ฐ ๋…ธ๋“œ failure๊ฐ€ ์žˆ์„ ๋•Œ street-turn ๋ฐ ๊ณต ์ปจํ…Œ์ด๋„ˆ ์žฌ๋ฐฐ์น˜ ๋น„์šฉ์„ ํฌํ•จํ•œ ๊ธฐ๋Œ€ ์ด ๋น„์šฉ์„ ๊ตฌํ•œ๋‹ค. ์ค‘๋‹จ์ด ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง ๋„คํŠธ์›Œํฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ์œผ๋ฉฐ disruption ๋น„์šฉ์„ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋ฒค์น˜๋งˆํฌ ๋ชจํ˜•์„ ํ™œ์šฉํ•œ๋‹ค. ๋”๋ถˆ์–ด ์‹ ๋ขฐ์„ฑ์„ ๊ณ ๋ คํ•œ ์ปจํ…Œ์ด๋„ˆ ๋„คํŠธ์›Œํฌ ํ๋ฆ„์„ ๊ตฌ์ถ•ํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๊ด€๋ฆฌ์  ์ธ์‚ฌ์ดํŠธ๋„ ์ œ๊ณตํ•œ๋‹ค.Abstract i Contents ii List of Tables vi List of Figures viii 1. Introduction 1 1.1 Empty Container Repositioning Problem 1 1.2 Reliability Problem 3 1.3 Research Motivation and Contributions 4 1.4 Outline of the Dissertation 7 2. Two-Way Four-Echelon Container Supply Chain 8 2.1 Problem Description and Literature Review 8 2.2 Mathematical Model for the TFESC 15 2.2.1 Overview and Assumptions 15 2.2.2 Notation and Formulation 19 2.3 Solution Procedure for the TFESC 25 2.3.1 Pseudo-Function-based Optimization Problem 25 2.3.2 Objective Function Evaluation 28 2.3.3 Heuristics for Reducing the Number of Leased Containers 32 2.3.4 Accelerated Particle Swarm Optimization 34 2.4 Computational Experiments 37 2.4.1 Heuristic Performances 39 2.4.2 Senstivity Analysis of Varying Periods 42 2.4.3 Senstivity Analysis of Varying Number of Echelons 45 2.5 Summary 48 3. Laden and Empty Container Supply Chain under Decentralized and Centralized Policies 50 3.1 Problem Description and Literature Review 50 3.2 Scenario-based Model for the LESC-DC 57 3.3 Model Development for the LESC-DC 61 3.3.1 Centralized Policy 65 3.3.2 Decentralized Policies (Policies I and II) 67 3.4 Computational Experiments 70 3.4.1 Numerical Exmpale 70 3.4.2 Sensitivity Analysis of Varying Degree of Risk in Container Return 72 3.4.3 Sensitivity Analysis of Increasing L_0 74 3.4.4 Sensitivity Analysis of Increasing t_r 76 3.4.5 Sensitivity Analysis of Decreasing es and Increasing e_f 77 3.4.6 Sensitivity Analysis of Discounting ใ€–pnใ€—_{f1} and ใ€–pnใ€—_{f2} 78 3.4.7 Sensitivity Analysis of Different Container Fleet Sizes 79 3.5 Managerial Insights 81 3.6 Summary 83 4. Reliable Container Supply Chain under Disruption 84 4.1 Problem Description and Literature Review 84 4.2 Mathematical Model for the RCNF 90 4.3 Reliability Model under Disruption 95 4.3.1 Designing the Patterns of q and s 95 4.3.2 Objective Function for the RCNF Model 98 4.4 Computational Experiments 103 4.4.1 Sensitivity Analysis of Expected Failure Costs 106 4.4.2 Sensitivity Analysis of Different Network Structures 109 4.4.3 Sensitivity Analysis of Demand-Supply Variation 112 4.4.4 Managerial Insights 115 4.5 Summary 116 5. Conclusions and Future Research 117 Appendices 120 A Proof of Proposition 3.1 121 B Proof of Proposition 3.2 124 C Proof of Proposition 3.3 126 D Sensitivity Analyses for Results 129 E Data for Sensitivity Analyses 142 Bibliography 146 ๊ตญ๋ฌธ์ดˆ๋ก 157 ๊ฐ์‚ฌ์˜ ๊ธ€ 160Docto

    How to boost market introduction of foldable containers? The unexpected role of container lease industry

    Get PDF
    Transport of empty containers, which arises from the need to reposition containers, is an expensive business. This holds in particular for shipping lines, who are usually responsible for container repositioning and have to bear these container management costs. Shipping lines are known to follow various strategies to reduce these costs of empty transport as much as they can. A rather unfamiliar, but interesting option to save costs is the possibility to fold empty containers. This could save transport costs, but also transhipment and storage costs. Using foldable containers could therefore be commercially attractive, provided that foldable containers can fulfil the technical and logistical conditions demanded by the users. Despite their potential benefits however, there seems to be a reluctance to use these containers. In this paper we analyse this reluctance and we discuss the important role container lessors could play in initiating the use of foldable containers. The special relationship between shipping lines and container lessors appears to be of particular importance and is a key to pave the way for using foldable containers

    How to boost market introduction of foldable containers? The unexpected role of container lease industry

    No full text
    Transport of empty containers, which arises from the need to reposition containers, is an expensive business. This holds in particular for shipping lines, who are usually responsible for container repositioning and have to bear these container management costs. Shipping lines are known to follow various strategies to reduce these costs of empty transport as much as they can. A rather unfamiliar, but interesting option to save costs is the possibility to fold empty containers. This could save transport costs, but also transhipment and storage costs. Using foldable containers could therefore be commercially attractive, provided that foldable containers can fulfil the technical and logistical conditions demanded by the users. Despite their potential benefits however, there seems to be a reluctance to use these containers. In this paper we analyse this reluctance and we discuss the important role container lessors could play in initiating the use of foldable containers. The special relationship between shipping lines and container lessors appears to be of particular importance and is a key to pave the way for using foldable containers

    Assessing the eco-efficiency benefits of empty container repositioning strategies via dry ports

    Get PDF
    Trade imbalances and global disturbances generate mismatches in the supply and demand of empty containers (ECs) that elevate the need for empty container repositioning (ECR). This research investigated dry ports as a potential means to minimize EC movements, and thus reduce costs and emissions. We assessed the environmental and economic effects of two ECR strategies via dry portsโ€”street turns and extended free temporary storageโ€”considering different scenarios of collaboration between shipping lines with different levels of container substitution. A multiparadigm simulation combined agent-based and discrete-event modelling to represent flows and estimate kilometers travelled, CO2 emissions, and costs resulting from combinations of ECR strategies and scenarios. Full ownership container substitution combined with extended free temporary storage at the dry port (FTDP) most improved ECR metrics, despite implementation challenges. Our results may be instrumental in increasing shipping linesโ€™ collaboration while reducing environmental impacts in up to 32 % of the inland ECR emissions

    Global and International Logistics

    Get PDF
    This book contains 10 reviewed papers published as a Special Issue โ€œGlobal and International Logisticsโ€ in the journal Sustainability, edited by Prof. Dr. Ryuichi Shibasaki, Prof. Dr. Daisuke Watanabe, and Dr. Tomoya Kawasaki. The topics of the papers contain the impact of logistics development under the Chinaโ€™s Belt and Road initiative (BRI) by using the improved gravity model, strategies against barriers to the BRI from a logistics and supply chain management perspective, the dynamic interaction between international logistics, and cross-border e-commerce trade, the effect of Chinaโ€™s restrictive programs on the international trade of waste products, the empty container repositioning problem of shipping companies with foldable containers, port capacity and connectivity improvement in the hub and feeder network in Indonesia, GHG emission scenarios for the maritime shipping sector using system dynamics, incorporating a shipping and shipbuilding market model, the emission inventory and bunker consumption from a LNG fleet from an automatic identification system database, the factors that can help select between land transport and maritime shipping in long-distance inter-regional cross-border transport, and container transport simulations in Myanmar with the global logistics intermodal network assignment model including both maritime shipping and land transport in the land-based Southeast Asia region. Some papers are related to the 8th International Conference on Transportation and Logistics (T-LOG 2020) which was held online on 6โ€“7 September 2020 hosted by Universitas Internasional Semen Indonesia

    The Global Impact of Container Inventory Imbalance and the Factors that Influence Container Inventory Management Strategies

    Get PDF
    Abstract Container shipping celebrates its 60th anniversary in 2016, as an innovation that had a tremendous impact on the global supply chain. This paper focuses on the impact of container inventory imbalance that mounts a substantial pressure on global supply chains. The primary objective of this paper is to explore best market practices and ascertain as to what factors influence these strategies. It also evaluates the impact of container inventory imbalance to the global supply chain. The study refers to interviews with industry experts and questionnaire responses from shipping lines operated in Sri Lanka in addition to the desk research to explain the impact of the container inventory problem in the global scale. If carriers provide the right quantity of containers demanded by exporters at the right location at the right time, the optimum supply chain performance could be guaranteed. The consequences of container fleet imbalances are ultimately borne by exporters, importers, consumers, traders and evenโ€”inadvertentlyโ€”other players in the cargo supply chain of international trade. Therefore, carriers need an effective solution to the global container inventory imbalance problem.Keywords: Container Inventory Imbalance, Freight, Forecasting, Flexibility, Strateg

    Analysis of Empty Container Accumulation Problem of Container Ports

    Get PDF
    In this study, the empty container problem is evaluated by quantification of factors related to empty container accumulation as well as alternative ways that can be followed for solutions. The study is mainly constructed as two parts; the first part is on identifying involving factors by using DEMATEL and the second part deals with alternative solutions by applying TOPSIS method. The main causes affecting empty containers were found as trading imbalance, irregular distribution, delivery time, unbalanced freight charges and inadequate port management. Finally, based on applied Multi Criteria Decision Making approach, this study suggests that empty container problem can be solved by sharing infrastructures and equipment among logistic companies, allocating storage areas for empty containers outside the ports and following robust fast custom regulations

    The distribution of small consignments from a production facility remote to the markets: The case of OMYA Hustadmarmor AS

    Get PDF
    Confidential until 20. May 201

    Maritime Empty Container Repositioning with Inventory-based Control

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    • โ€ฆ
    corecore