7,167 research outputs found

    An edge-directed interpolation method for fetal spine MR images

    Get PDF
    Abstract Background Fetal spinal magnetic resonance imaging (MRI) is a prenatal routine for proper assessment of fetus development, especially when suspected spinal malformations occur while ultrasound fails to provide details. Limited by hardware, fetal spine MR images suffer from its low resolution. High-resolution MR images can directly enhance readability and improve diagnosis accuracy. Image interpolation for higher resolution is required in clinical situations, while many methods fail to preserve edge structures. Edge carries heavy structural messages of objects in visual scenes for doctors to detect suspicions, classify malformations and make correct diagnosis. Effective interpolation with well-preserved edge structures is still challenging. Method In this paper, we propose an edge-directed interpolation (EDI) method and apply it on a group of fetal spine MR images to evaluate its feasibility and performance. This method takes edge messages from Canny edge detector to guide further pixel modification. First, low-resolution (LR) images of fetal spine are interpolated into high-resolution (HR) images with targeted factor by bi-linear method. Then edge information from LR and HR images is put into a twofold strategy to sharpen or soften edge structures. Finally a HR image with well-preserved edge structures is generated. The HR images obtained from proposed method are validated and compared with that from other four EDI methods. Performances are evaluated from six metrics, and subjective analysis of visual quality is based on regions of interest (ROI). Results All these five EDI methods are able to generate HR images with enriched details. From quantitative analysis of six metrics, the proposed method outperforms the other four from signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM) and mutual information (MI) with seconds-level time consumptions (TC). Visual analysis of ROI shows that the proposed method maintains better consistency in edge structures with the original images. Conclusions The proposed method classifies edge orientations into four categories and well preserves structures. It generates convincing HR images with fine details and is suitable in real-time situations. Iterative curvature-based interpolation (ICBI) method may result in crisper edges, while the other three methods are sensitive to noise and artifacts

    Collaborative patch-based super-resolution for diffusion-weighted images

    Full text link
    In this paper, a new single image acquisition super-resolution method is proposed to increase image resolution of diffusion weighted (DW) images. Based on a nonlocal patch-based strategy, the proposed method uses a non-diffusion image (b0) to constrain the reconstruction of DW images. An extensive validation is presented with a gold standard built on averaging 10 high-resolution DW acquis itions. A comparison with classical interpo- lation methods such as trilinear and B-spline demonstrates the competitive results of our proposed approach in termsofimprovementsonimagereconstruction,fractiona lanisotropy(FA)estimation,generalizedFAandangular reconstruction for tensor and high angular resolut ion diffusion imaging (HARDI) models. Besides, fi rst results of reconstructed ultra high resolution DW images are presented at 0.6 × 0.6 × 0.6 mm 3 and0.4×0.4×0.4mm 3 using our gold standard based on the average of 10 acquisitions, and on a single acquisition. Finally, fi ber tracking results show the potential of the proposed super-resolution approach to accurately analyze white matter brain architecture.We thank the reviewers for their useful comments that helped improve the paper. We also want to thank the Pr Louis Collins for proofreading this paper and his fruitful comments. Finally, we want to thank Martine Bordessoules for her help during image acquisition of DWI used to build the phantom. This work has been supported by the French grant "HR-DTI" ANR-10-LABX-57 funded by the TRAIL from the French Agence Nationale de la Recherche within the context of the Investments for the Future program. This work has been also partially supported by the French National Agency for Research (Project MultImAD; ANR-09-MNPS-015-01) and by the Spanish grant TIN2011-26727 from the Ministerio de Ciencia e Innovacion. This work benefited from the use of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), FiberNavigator (code.google.com/p/fibernavigator/), MRtrix software (http://www. brain.org.au/software/mrtrix/) and ITKsnap (www.itk.org).Coupé, P.; Manjón Herrera, JV.; Chamberland, M.; Descoteaux, M.; Hiba, B. (2013). Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage. 83:245-261. https://doi.org/10.1016/j.neuroimage.2013.06.030S2452618

    Adpative image interpolation

    Get PDF
    Simple interpolation techniques like nearest neighbor, bilinear, bicubic in the past had gained popularity due to their simplicity and low computational cost. But with the advent of high performing machines, demand for better interpolation methods at the expense of their computational complexity has arised. In this endeavor, myriads of interpolation methods have been introduced. Some of which are based on edge intensity, curvature profile of image, fuzzy logic. While others are optimized for the particular needs like resistance to outliers, performance in real time basis etc. An extensive list of interpolation methods exists in literature. We have reviewed an adaptive interpolation technique based on Newton forward dierence. This difference provides a measure of goodness for grouping of pixels around the target pixel for interpolation

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Non-local MRI upsampling.

    Get PDF
    International audienceIn Magnetic Resonance Imaging, image resolution is limited by several factors such as hardware or time constraints. In many cases, the acquired images have to be upsampled to match a specific resolution. In such cases, image interpolation techniques have been traditionally applied. However, traditional interpolation techniques are not able to recover high frequency information of the underlying high resolution data. In this paper, a new upsampling method is proposed to recover some of this high frequency information by using a data-adaptive patch-based reconstruction in combination with a subsampling coherence constraint. The proposed method has been evaluated on synthetic and real clinical cases and compared with traditional interpolation methods. The proposed method is shown to outperform classical interpolation methods compared in terms of quantitative measures and visual observation
    corecore