245 research outputs found

    Perceptual Copyright Protection Using Multiresolution Wavelet-Based Watermarking And Fuzzy Logic

    Full text link
    In this paper, an efficiently DWT-based watermarking technique is proposed to embed signatures in images to attest the owner identification and discourage the unauthorized copying. This paper deals with a fuzzy inference filter to choose the larger entropy of coefficients to embed watermarks. Unlike most previous watermarking frameworks which embedded watermarks in the larger coefficients of inner coarser subbands, the proposed technique is based on utilizing a context model and fuzzy inference filter by embedding watermarks in the larger-entropy coefficients of coarser DWT subbands. The proposed approaches allow us to embed adaptive casting degree of watermarks for transparency and robustness to the general image-processing attacks such as smoothing, sharpening, and JPEG compression. The approach has no need the original host image to extract watermarks. Our schemes have been shown to provide very good results in both image transparency and robustness.Comment: 13 pages, 7 figure

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Audio watermarking using transformation techniques

    Get PDF
    Watermarking is a technique, which is used in protecting digital information like images, videos and audio as it provides copyrights and ownership. Audio watermarking is more challenging than image watermarking due to the dynamic supremacy of hearing capacity over the visual field. This thesis attempts to solve the quantization based audio watermarking technique based on both the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The underlying system involves the statistical characteristics of the signal. This study considers different wavelet filters and quantization techniques. A comparison is performed on diverge algorithms and audio signals to help examine the performance of the proposed method. The embedded watermark is a binary image and different encryption techniques such as Arnold Transform and Linear Feedback Shift Register (LFSR) are considered. The watermark is distributed uniformly in the areas of low frequencies i.e., high energy, which increases the robustness of the watermark. Further, spreading of watermark throughout the audio signal makes the technique robust against desynchronized attacks. Experimental results show that the signals generated by the proposed algorithm are inaudible and robust against signal processing techniques such as quantization, compression and resampling. We use Matlab (version 2009b) to implement the algorithms discussed in this thesis. Audio transformation techniques for compression in Linux (Ubuntu 9.10) are applied on the signal to simulate the attacks such as re-sampling, re-quantization, and mp3 compression; whereas, Matlab program for de-synchronized attacks like jittering and cropping. We envision that the proposed algorithm may work as a tool for securing intellectual properties of the musicians and audio distribution companies because of its high robustness and imperceptibility

    A novel Watermarking Technique Based on Hybrid Transforms

    Get PDF
    This paper proposed Anovel watermarking scheme using hybrid of  Dual Tree Complex Wavelet Transform and singular value decomposition . Image watermarking is to embed copyright data in image bit streams. Our proposed technique demonestrates  the effective and robust of image watermarking algorithms using a hybrid of two strong mathematical transforms; the 2-level Dual Tree Complex Wavelet Transform (DT-CWT) and Singular Value Decomposition (SVD). This technique shows high level of security and robustness against attacks. The algorithm was tested for imperceptibility and robustness and the results were compared with DWT-SVD-based technique, it is shown that the proposed watermarking schemes is considerably more robust and effective
    corecore