166,864 research outputs found

    Parallel and Distributed Stream Processing: Systems Classification and Specific Issues

    Get PDF
    Deploying an infrastructure to execute queries on distributed data streams sources requires to identify a scalable and robust solution able to provide results which can be qualified. Last decade, different Data Stream Management Systems have been designed by exploiting new paradigm and technologies to improve performances of solutions facing specific features of data streams and their growing number. However, some tradeoffs are often achieved between performance of the processing, resources consumption and quality of results. This survey 5 suggests an overview of existing solutions among distributed and parallel systems classified according to criteria able to allow readers to efficiently identify relevant existing Distributed Stream Management Systems according to their needs ans resources

    Evolving Large-Scale Data Stream Analytics based on Scalable PANFIS

    Full text link
    Many distributed machine learning frameworks have recently been built to speed up the large-scale data learning process. However, most distributed machine learning used in these frameworks still uses an offline algorithm model which cannot cope with the data stream problems. In fact, large-scale data are mostly generated by the non-stationary data stream where its pattern evolves over time. To address this problem, we propose a novel Evolving Large-scale Data Stream Analytics framework based on a Scalable Parsimonious Network based on Fuzzy Inference System (Scalable PANFIS), where the PANFIS evolving algorithm is distributed over the worker nodes in the cloud to learn large-scale data stream. Scalable PANFIS framework incorporates the active learning (AL) strategy and two model fusion methods. The AL accelerates the distributed learning process to generate an initial evolving large-scale data stream model (initial model), whereas the two model fusion methods aggregate an initial model to generate the final model. The final model represents the update of current large-scale data knowledge which can be used to infer future data. Extensive experiments on this framework are validated by measuring the accuracy and running time of four combinations of Scalable PANFIS and other Spark-based built in algorithms. The results indicate that Scalable PANFIS with AL improves the training time to be almost two times faster than Scalable PANFIS without AL. The results also show both rule merging and the voting mechanisms yield similar accuracy in general among Scalable PANFIS algorithms and they are generally better than Spark-based algorithms. In terms of running time, the Scalable PANFIS training time outperforms all Spark-based algorithms when classifying numerous benchmark datasets.Comment: 20 pages, 5 figure

    Real-Time Data Processing With Lambda Architecture

    Get PDF
    Data has evolved immensely in recent years, in type, volume and velocity. There are several frameworks to handle the big data applications. The project focuses on the Lambda Architecture proposed by Marz and its application to obtain real-time data processing. The architecture is a solution that unites the benefits of the batch and stream processing techniques. Data can be historically processed with high precision and involved algorithms without loss of short-term information, alerts and insights. Lambda Architecture has an ability to serve a wide range of use cases and workloads that withstands hardware and human mistakes. The layered architecture enhances loose coupling and flexibility in the system. This a huge benefit that allows understanding the trade-offs and application of various tools and technologies across the layers. There has been an advancement in the approach of building the LA due to improvements in the underlying tools. The project demonstrates a simplified architecture for the LA that is maintainable
    • …
    corecore