53 research outputs found

    Image Restoration

    Get PDF
    This book represents a sample of recent contributions of researchers all around the world in the field of image restoration. The book consists of 15 chapters organized in three main sections (Theory, Applications, Interdisciplinarity). Topics cover some different aspects of the theory of image restoration, but this book is also an occasion to highlight some new topics of research related to the emergence of some original imaging devices. From this arise some real challenging problems related to image reconstruction/restoration that open the way to some new fundamental scientific questions closely related with the world we interact with

    Image enhancement methods and applications in computational photography

    Get PDF
    Computational photography is currently a rapidly developing and cutting-edge topic in applied optics, image sensors and image processing fields to go beyond the limitations of traditional photography. The innovations of computational photography allow the photographer not only merely to take an image, but also, more importantly, to perform computations on the captured image data. Good examples of these innovations include high dynamic range imaging, focus stacking, super-resolution, motion deblurring and so on. Although extensive work has been done to explore image enhancement techniques in each subfield of computational photography, attention has seldom been given to study of the image enhancement technique of simultaneously extending depth of field and dynamic range of a scene. In my dissertation, I present an algorithm which combines focus stacking and high dynamic range (HDR) imaging in order to produce an image with both extended depth of field (DOF) and dynamic range than any of the input images. In this dissertation, I also investigate super-resolution image restoration from multiple images, which are possibly degraded by large motion blur. The proposed algorithm combines the super-resolution problem and blind image deblurring problem in a unified framework. The blur kernel for each input image is separately estimated. I also do not make any restrictions on the motion fields among images; that is, I estimate dense motion field without simplifications such as parametric motion. While the proposed super-resolution method uses multiple images to enhance spatial resolution from multiple regular images, single image super-resolution is related to techniques of denoising or removing blur from one single captured image. In my dissertation, space-varying point spread function (PSF) estimation and image deblurring for single image is also investigated. Regarding the PSF estimation, I do not make any restrictions on the type of blur or how the blur varies spatially. Once the space-varying PSF is estimated, space-varying image deblurring is performed, which produces good results even for regions where it is not clear what the correct PSF is at first. I also bring image enhancement applications to both personal computer (PC) and Android platform as computational photography applications

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    Nonlinear Dynamics

    Get PDF
    This volume covers a diverse collection of topics dealing with some of the fundamental concepts and applications embodied in the study of nonlinear dynamics. Each of the 15 chapters contained in this compendium generally fit into one of five topical areas: physics applications, nonlinear oscillators, electrical and mechanical systems, biological and behavioral applications or random processes. The authors of these chapters have contributed a stimulating cross section of new results, which provide a fertile spectrum of ideas that will inspire both seasoned researches and students

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding
    • …
    corecore