27 research outputs found

    Global exponential synchronization of quaternion-valued memristive neural networks with time delays

    Get PDF
    This paper extends the memristive neural networks (MNNs) to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established, and the problem of drive-response global synchronization of this type of networks is investigated in this paper. Two cases are taken into consideration: one is with the conventional differential inclusion assumption, the other without. Criteria for the global synchronization of these two cases are achieved respectively by appropriately choosing the Lyapunov functional and applying some inequality techniques. Finally, corresponding simulation examples are presented to demonstrate the correctness of the proposed results derived in this paper

    Global exponential convergence of delayed inertial Cohen–Grossberg neural networks

    Get PDF
    In this paper, the exponential convergence of delayed inertial Cohen–Grossberg neural networks (CGNNs) is studied. Two methods are adopted to discuss the inertial CGNNs, one is expressed as two first-order differential equations by selecting a variable substitution, and the other does not change the order of the system based on the nonreduced-order method. By establishing appropriate Lyapunov function and using inequality techniques, sufficient conditions are obtained to ensure that the discussed model converges exponentially to a ball with the prespecified convergence rate. Finally, two simulation examples are proposed to illustrate the validity of the theorem results

    Stability analysis for delayed quaternion-valued neural networks via nonlinear measure approach

    Get PDF
    In this paper, the existence and stability analysis of the quaternion-valued neural networks (QVNNs) with time delay are considered. Firstly, the QVNNs are equivalently transformed into four real-valued systems. Then, based on the Lyapunov theory, nonlinear measure approach, and inequality technique, some sufficient criteria are derived to ensure the existence and uniqueness of the equilibrium point as well as global stability of delayed QVNNs. In addition, the provided criteria are presented in the form of linear matrix inequality (LMI), which can be easily checked by LMI toolbox in MATLAB. Finally, two simulation examples are demonstrated to verify the effectiveness of obtained results. Moreover, the less conservatism of the obtained results is also showed by two comparison examples

    Passivity and synchronization of coupled complex-valued memristive neural networks

    Get PDF
    The coupled complex-valued memristive neural networks (CCVMNNs) are investigated in this study. First, we analyze the passivity of the proposed network model by designing an appropriate controller and using certain inequalities as well as Lyapunov functional method, and provide a passivity condition for the considered CCVMNNs. In addition, a criterion for guaranteeing synchronization of this kind of network is established. Finally, the effectiveness and correctness of the acquired theoretical results are verified by a numerical example

    New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects

    Get PDF
    In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the state-feedback control techniques, and constructing a general Lyapunov functional, with the help of inequality techniques and the finite-time stability theory, novel criteria are established to realize the FFTS of the considered delayed MRDNNs, which generalize and complement previously known results. Finally, a numerical example is provided to support the obtained theoretical results

    Exponential synchronization for second-order switched quaternion-valued neural networks with neutral-type and mixed time-varying delays

    Get PDF
    This article focuses on the global exponential synchronization (GES) for second-order state-dependent switched quaternion-valued neural networks (SOSDSQVNNs) with neutral-type and mixed delays. By proposing some new Lyapunov–Krasovskii functionals (LKFs) and adopting some inequalities, several new criteria in the shape of algebraic inequalities are proposed to ensure the GES for the concerned system by using hybrid switched controllers (HSCs). Different from the common reducing order and separation ways, this article presents some new LKFs to straightway discuss the GES of the concerned system based on non-reduction order and nonseparation strategies. Ultimately, an example is provided to validate the effectiveness of the theoretical outcomes

    A switching control for finite-time synchronization of memristor-based BAM neural networks with stochastic disturbances

    Get PDF
    This paper deals with the finite-time stochastic synchronization for a class of memristorbased bidirectional associative memory neural networks (MBAMNNs) with time-varying delays and stochastic disturbances. Firstly, based on the physical property of memristor and the circuit of MBAMNNs, a MBAMNNs model with more reasonable switching conditions is established. Then, based on the theory of Filippov’s solution, by using Lyapunov–Krasovskii functionals and stochastic analysis technique, a sufficient condition is given to ensure the finite-time stochastic synchronization of MBAMNNs with a certain controller. Next, by a further discussion, an errordependent switching controller is given to shorten the stochastic settling time. Finally, numerical simulations are carried out to illustrate the effectiveness of theoretical results

    Finite-time lag projective synchronization of delayed fractional-order quaternion-valued neural networks with parameter uncertainties

    Get PDF
    This paper discusses a class issue of finite-time lag projective synchronization (FTLPS) of delayed fractional-order quaternion-valued neural networks (FOQVNNs) with parameter uncertainties, which is solved by a non-decomposition method. Firstly, a new delayed FOQVNNs model with uncertain parameters is designed. Secondly, two types of feedback controller and adaptive controller without sign functions are designed in the quaternion domain. Based on the Lyapunov analysis method, the non-decomposition method is applied to replace the decomposition method that requires complex calculations, combined with some quaternion inequality techniques, to accurately estimate the settling time of FTLPS. Finally, the correctness of the obtained theoretical results is testified by a numerical simulation example

    Passivity and synchronization of coupled reaction-diffusion complex-valued memristive neural networks

    Get PDF
    This paper considers two types of coupled reaction-diffusion complex-valued memristive neural networks (CRDCVMNNs). The nodes of the first type CRDCVMNN are coupled through their state and the second one is coupled by spatial diffusion coupling term. For the former, some novel criteria for the passivity and synchronization are derived by constructing an appropriate controller and utilizing some inequality techniques as well as Lyapunov functional method. For the latter, we establish some sufficient conditions which guarantee that this type of CRDCVMNNs can realize passivity and synchronization. Finally, the effectiveness and correctness of the acquired theoretical results are verified by two numerical examples
    corecore