23,187 research outputs found

    Robust direction of arrival estimation in non-Gaussian noise

    Get PDF
    Cataloged from PDF version of article.In this correspondence, a nonlinearly weighted least-squares method is developed for robust modeling of sensor array data. Weighting functions for various observation noise scenarios are determined using maximum likelihood estimation theory. Computational complexity of the new method is comparable with the standard least-squares estimation procedures. Simulation examples of direction-of-arrival estimation are presented

    Array and multichannel signal processing using nonparametric statistics

    Get PDF
    In array signal processing a group of sensors located at distinct spatial locations is deployed to measure a propagating wavefield. The multichannel output is then processed to provide information about parameters of interest. Application areas include smart antennas in communications, radar, sonar and biomedicine. When deriving array signal processing algorithms the noise is typically modeled as a white Gaussian random process. A shortcoming of the estimation procedures derived under Gaussian assumption is that they are extremely sensitive to deviations from the assumed model, i.e. they are not robust. In real-world applications the assumption of white Gaussian noise is not always valid. Consequently, there has been a growing interest in estimation methods which work reliably in both Gaussian and non-Gaussian noise. In this thesis, new statistical procedures for array and multichannel signal processing are developed. In the area of array signal processing, the work concentrates on high-resolution subspace-based Direction Of Arrival (DOA) estimation and estimation of the number of source signals. Robust methods for DOA estimation and estimation of the number of source signals are derived. Spatial-smoothing based extensions of the techniques to deal with coherent signals are also derived. The methods developed are based on multivariate nonparametric statistics, in particular sign and rank covariance matrices. It is shown that these statistics may be used to obtain convergent estimates of the signal and noise subspaces for a large family of symmetric noise distributions. Simulations reveal that the techniques developed exhibit near-optimal performance when the noise distribution is Gaussian and are highly reliable if the noise is non-Gaussian. Multivariate nonparametric statistics are also applied to frequency estimation and estimation of the eigenvectors of the covariance matrix. Theoretical justification for the techniques is shown and their robust performance is illustrated in simulations.reviewe

    Robust Gravitational Wave Burst Detection and Source Localization in a Network of Interferometers Using Cross Wigner Spectra

    Full text link
    We discuss a fast cross-Wigner transform based technique for detecting gravitational wave bursts, and estimating the direction of arrival, using a network of (three) non co-located interferometric detectors. The performances of the detector as a function of signal strength and source location, and the accuracy of the direction of arrival estimation are investigated by numerical simulations.Comment: accepted in Class. Quantum Gravit

    Array signal processing for maximum likelihood direction-of-arrival estimation

    Get PDF
    Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds

    Accurate angle-of-arrival measurement using particle swarm optimization

    Get PDF
    As one of the major methods for location positioning, angle-of-arrival (AOA) estimation is a significant technology in radar, sonar, radio astronomy, and mobile communications. AOA measurements can be exploited to locate mobile units, enhance communication efficiency and network capacity, and support location-aided routing, dynamic network management, and many location-based services. In this paper, we propose an algorithm for AOA estimation in colored noise fields and harsh application scenarios. By modeling the unknown noise covariance as a linear combination of known weighting matrices, a maximum likelihood (ML) criterion is established, and a particle swarm optimization (PSO) paradigm is designed to optimize the cost function. Simulation results demonstrate that the paired estimator PSO-ML significantly outperforms other popular techniques and produces superior AOA estimates

    Estimation of the Number of Sources in Unbalanced Arrays via Information Theoretic Criteria

    Full text link
    Estimating the number of sources impinging on an array of sensors is a well known and well investigated problem. A common approach for solving this problem is to use an information theoretic criterion, such as Minimum Description Length (MDL) or the Akaike Information Criterion (AIC). The MDL estimator is known to be a consistent estimator, robust against deviations from the Gaussian assumption, and non-robust against deviations from the point source and/or temporally or spatially white additive noise assumptions. Over the years several alternative estimation algorithms have been proposed and tested. Usually, these algorithms are shown, using computer simulations, to have improved performance over the MDL estimator, and to be robust against deviations from the assumed spatial model. Nevertheless, these robust algorithms have high computational complexity, requiring several multi-dimensional searches. In this paper, motivated by real life problems, a systematic approach toward the problem of robust estimation of the number of sources using information theoretic criteria is taken. An MDL type estimator that is robust against deviation from assumption of equal noise level across the array is studied. The consistency of this estimator, even when deviations from the equal noise level assumption occur, is proven. A novel low-complexity implementation method avoiding the need for multi-dimensional searches is presented as well, making this estimator a favorable choice for practical applications.Comment: To appear in the IEEE Transactions on Signal Processin
    • …
    corecore