63 research outputs found

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    ACII 2009: Affective Computing and Intelligent Interaction. Proceedings of the Doctoral Consortium 2009

    Get PDF

    Frame-level features conveying phonetic information for language and speaker recognition

    Get PDF
    150 p.This Thesis, developed in the Software Technologies Working Group of the Departmentof Electricity and Electronics of the University of the Basque Country, focuseson the research eld of spoken language and speaker recognition technologies.More specically, the research carried out studies the design of a set of featuresconveying spectral acoustic and phonotactic information, searches for the optimalfeature extraction parameters, and analyses the integration and usage of the featuresin language recognition systems, and the complementarity of these approacheswith regard to state-of-the-art systems. The study reveals that systems trained onthe proposed set of features, denoted as Phone Log-Likelihood Ratios (PLLRs), arehighly competitive, outperforming in several benchmarks other state-of-the-art systems.Moreover, PLLR-based systems also provide complementary information withregard to other phonotactic and acoustic approaches, which makes them suitable infusions to improve the overall performance of spoken language recognition systems.The usage of this features is also studied in speaker recognition tasks. In this context,the results attained by the approaches based on PLLR features are not as remarkableas the ones of systems based on standard acoustic features, but they still providecomplementary information that can be used to enhance the overall performance ofthe speaker recognition systems

    Emotion-aware voice interfaces based on speech signal processing

    Get PDF
    Voice interfaces (VIs) will become increasingly widespread in current daily lives as AI techniques progress. VIs can be incorporated into smart devices like smartphones, as well as integrated into autos, home automation systems, computer operating systems, and home appliances, among other things. Current speech interfaces, however, are unaware of users’ emotional states and hence cannot support real communication. To overcome these limitations, it is necessary to implement emotional awareness in future VIs. This thesis focuses on how speech signal processing (SSP) and speech emotion recognition (SER) can enable VIs to gain emotional awareness. Following an explanation of what emotion is and how neural networks are implemented, this thesis presents the results of several user studies and surveys. Emotions are complicated, and they are typically characterized using category and dimensional models. They can be expressed verbally or nonverbally. Although existing voice interfaces are unaware of users’ emotional states and cannot support natural conversations, it is possible to perceive users’ emotions by speech based on SSP in future VIs. One section of this thesis, based on SSP, investigates mental restorative effects on humans and their measures from speech signals. SSP is less intrusive and more accessible than traditional measures such as attention scales or response tests, and it can provide a reliable assessment for attention and mental restoration. SSP can be implemented into future VIs and utilized in future HCI user research. The thesis then moves on to present a novel attention neural network based on sparse correlation features. The detection accuracy of emotions in the continuous speech was demonstrated in a user study utilizing recordings from a real classroom. In this section, a promising result will be shown. In SER research, it is unknown if existing emotion detection methods detect acted emotions or the genuine emotion of the speaker. Another section of this thesis is concerned with humans’ ability to act on their emotions. In a user study, participants were instructed to imitate five fundamental emotions. The results revealed that they struggled with this task; nevertheless, certain emotions were easier to replicate than others. A further study concern is how VIs should respond to users’ emotions if SER techniques are implemented in VIs and can recognize users’ emotions. The thesis includes research on ways for dealing with the emotions of users. In a user study, users were instructed to make sad, angry, and terrified VI avatars happy and were asked if they would like to be treated the same way if the situation were reversed. According to the results, the majority of participants tended to respond to these unpleasant emotions with neutral emotion, but there is a difference among genders in emotion selection. For a human-centered design approach, it is important to understand what the users’ preferences for future VIs are. In three distinct cultures, a questionnaire-based survey on users’ attitudes and preferences for emotion-aware VIs was conducted. It was discovered that there are almost no gender differences. Cluster analysis found that there are three fundamental user types that exist in all cultures: Enthusiasts, Pragmatists, and Sceptics. As a result, future VI development should consider diverse sorts of consumers. In conclusion, future VIs systems should be designed for various sorts of users as well as be able to detect the users’ disguised or actual emotions using SER and SSP technologies. Furthermore, many other applications, such as restorative effects assessments, can be included in the VIs system
    • …
    corecore