7 research outputs found

    Development of a Resource Manager Framework for Adaptive Beamformer Selection

    Get PDF
    Adaptive digital beamforming (DBF) algorithms are designed to mitigate the effects of interference and noise in the electromagnetic (EM) environment encountered by modern electronic support (ES) receivers. Traditionally, an ES receiver employs a single adaptive DBF algorithm that is part of the design of the receiver system. While the traditional form of receiver implementation is effective in many scenarios it has inherent limitations. This dissertation proposes a new ES receiver framework capable of overcoming the limitations of traditional ES receivers. The proposed receiver framework is capable of forming multiple, independent, simultaneous adaptive digital beams toward multiple signals of interest in an electromagnetic environment. The main contribution of the research is the development, validation, and verification of a resource manager (RM) algorithm. The RM estimates a set of parameters that characterizes the electromagnetic environment and selects an adaptive digital beam forming DBF algorithm for implementation toward all each signal of interest (SOI) in the environment. Adaptive DBF algorithms are chosen by the RM based upon their signal to interference plus noise ratio (SINR) improvement ratio and their computational complexity. The proposed receiver framework is demonstrated to correctly estimate the desired electromagnetic parameters and select an adaptive DBF from the LUT

    The design and implementation of an acoustic phased array transmitter for the demonstration of MIMO techniques

    Get PDF
    MIMO radar algorithms are the latest generation of techniques that can be applied to array radars. They offer the potential to improve the radar resolution, increase the number of targets that can be identified and give added flexibility in beampattern design. However, little experimental data demonstrating MIMO radar is available because radar arrays are already expensive systems and MIMO extends the com- plexity and cost further. An acoustic array, which works on the same principles as a radio frequency radar array, can be built at a fraction of the cost of a real radar system. The novel contribution of this project was the demonstration ofMIMO radar techniques on an acoustic array, which was designed and built for this purpose. To achieve the project objectives, the theory of traditional phased array radar techniques and MIMO techniques was researched. The phased array and MIMO techniques were also simulated under narrowband and wideband conditions, and the strengths and weaknesses of each were highlighted. This was followed by the design and implementation of a low cost audible acoustic transmitter array to be used with an existing receiver array to demonstrate the investigated array radar techniques. Finally, the techniques were tested on the hardware platform. The simulation and hardware test results were used to evaluate and compare the performance of phased array and MIMO radar techniques. The beampattern design flexibility that is offered by MIMO radar was demonstrated with the transmission and measurement of omnidirectional, single-lobed and multi-lobed MIMO beampat- terns. Also, parameter estimation experiments were performed where phased array and MIMO radar signals were transmitted. Phased array techniques were shown to be simple, effective and robust. The MIMO Capon, APES and GLRT parameter estimation techniques were shown to be sensitive to the type of signals transmitted, and in most cases, the added complexity of these techniques did not lead to improved target parameter estimation results. However, the MIMO technique of transmitter beamforming on reception gave high resolution target range and angle estimates, living up to the expectations placed on MIMO radar

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Sparse machine learning methods with applications in multivariate signal processing

    Get PDF
    This thesis details theoretical and empirical work that draws from two main subject areas: Machine Learning (ML) and Digital Signal Processing (DSP). A unified general framework is given for the application of sparse machine learning methods to multivariate signal processing. In particular, methods that enforce sparsity will be employed for reasons of computational efficiency, regularisation, and compressibility. The methods presented can be seen as modular building blocks that can be applied to a variety of applications. Application specific prior knowledge can be used in various ways, resulting in a flexible and powerful set of tools. The motivation for the methods is to be able to learn and generalise from a set of multivariate signals. In addition to testing on benchmark datasets, a series of empirical evaluations on real world datasets were carried out. These included: the classification of musical genre from polyphonic audio files; a study of how the sampling rate in a digital radar can be reduced through the use of Compressed Sensing (CS); analysis of human perception of different modulations of musical key from Electroencephalography (EEG) recordings; classification of genre of musical pieces to which a listener is attending from Magnetoencephalography (MEG) brain recordings. These applications demonstrate the efficacy of the framework and highlight interesting directions of future research
    corecore