4,904 research outputs found

    Decentralised delay-dependent static output feedback variable structure control

    Get PDF
    In this paper, an output feedback stabilisation problem is considered for a class of large scale interconnected time delay systems with uncertainties. The uncertainties appear in both isolated subsystems and interconnections. The bounds on the uncertainties are nonlinear and time delayed. It is not required that either the known interconnections or the uncertain interconnections are matched. Then, a decentralised delay-dependant static output feedback variable structure control is synthesised to stabilise the system globally uniformly asymptotically using the Lyapunov Razumikhin approach. A case study relating to a river pollution control problem is presented to illustrate the proposed approach

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Delay-independent decentralised output feedback control for large-scale systems with nonlinear interconnections

    Get PDF
    In this paper, a stabilisation problem for a class of large-scale systems with nonlinear interconnections is considered. All the uncertainties are nonlinear and are subject to the effects of time delay. A decentralised static output feedback variable structure control is synthesised and the stability of the corresponding closed-loop system is analysed based on the Lyapunov Razumikhin approach. A set of conditions is developed to guarantee that the large-scale interconnected system is stabilised uniformly asymptotically. Further study shows that the conservatism can be reduced by employing additive controllers if the known interconnections are separated into matched and mismatched parts. It is not required that the subsystems are square. The designed controller is independent of time delay and thus it does not require memory. Simulation results show the effectiveness of the proposed approach

    Performance analysis with network-enhanced complexities: On fading measurements, event-triggered mechanisms, and cyber attacks

    Get PDF
    Copyright © 2014 Derui Ding et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Nowadays, the real-world systems are usually subject to various complexities such as parameter uncertainties, time-delays, and nonlinear disturbances. For networked systems, especially large-scale systems such as multiagent systems and systems over sensor networks, the complexities are inevitably enhanced in terms of their degrees or intensities because of the usage of the communication networks. Therefore, it would be interesting to (1) examine how this kind of network-enhanced complexities affects the control or filtering performance; and (2) develop some suitable approaches for controller/filter design problems. In this paper, we aim to survey some recent advances on the performance analysis and synthesis with three sorts of fashionable network-enhanced complexities, namely, fading measurements, event-triggered mechanisms, and attack behaviors of adversaries. First, these three kinds of complexities are introduced in detail according to their engineering backgrounds, dynamical characteristic, and modelling techniques. Then, the developments of the performance analysis and synthesis issues for various networked systems are systematically reviewed. Furthermore, some challenges are illustrated by using a thorough literature review and some possible future research directions are highlighted.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009, 61329301, 61203139, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A Survey of Decentralized Adaptive Control

    Get PDF

    Time Complexity of Decentralized Fixed-Mode Verification

    Get PDF
    Given an interconnected system, this note is concerned with the time complexity of verifying whether an unrepeated mode of the system is a decentralized fixed mode (DFM). It is shown that checking the decentralized fixedness of any distinct mode is tantamount to testing the strong connectivity of a digraph formed based on the system. It is subsequently proved that the time complexity of this decision problem using the proposed approach is the same as the complexity of matrix multiplication. This work concludes that the identification of distinct DFMs (by means of a deterministic algorithm, rather than a randomized one) is computationally very easy, although the existing algorithms for solving this problem would wrongly imply that it is cumbersome. This note provides not only a complexity analysis, but also an efficient algorithm for tackling the underlying problem

    Decentralised reliable guaranteed cost control of uncertain systems: an LMI design

    Get PDF
    © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The problem of designing a decentralised control scheme for a class of linear large scale interconnected systems with norm-bounded time-varying parameter uncertainties under a class of control failures is addressed. These failures are described by a model that considers possible outages or partial failures in every single actuator of each decentralised controller. The control design is performed through two steps. First, a decentralised reliable guaranteed cost control set is derived and, second, a feasible linear matrix inequalities procedure is presented for the effective construction of the control set. A numerical example illustrates the efficiency of the proposed control schemePeer ReviewedPostprint (published version
    corecore