61,471 research outputs found

    Learning Multimodal Latent Attributes

    Get PDF
    Abstract—The rapid development of social media sharing has created a huge demand for automatic media classification and annotation techniques. Attribute learning has emerged as a promising paradigm for bridging the semantic gap and addressing data sparsity via transferring attribute knowledge in object recognition and relatively simple action classification. In this paper, we address the task of attribute learning for understanding multimedia data with sparse and incomplete labels. In particular we focus on videos of social group activities, which are particularly challenging and topical examples of this task because of their multi-modal content and complex and unstructured nature relative to the density of annotations. To solve this problem, we (1) introduce a concept of semi-latent attribute space, expressing user-defined and latent attributes in a unified framework, and (2) propose a novel scalable probabilistic topic model for learning multi-modal semi-latent attributes, which dramatically reduces requirements for an exhaustive accurate attribute ontology and expensive annotation effort. We show that our framework is able to exploit latent attributes to outperform contemporary approaches for addressing a variety of realistic multimedia sparse data learning tasks including: multi-task learning, learning with label noise, N-shot transfer learning and importantly zero-shot learning

    Outfit Recommender System

    Get PDF
    The online apparel retail market size in the United States is worth about seventy-two billion US dollars. Recommendation systems on retail websites generate a lot of this revenue. Thus, improving recommendation systems can increase their revenue. Traditional recommendations for clothes consisted of lexical methods. However, visual-based recommendations have gained popularity over the past few years. This involves processing a multitude of images using different image processing techniques. In order to handle such a vast quantity of images, deep neural networks have been used extensively. With the help of fast Graphics Processing Units, these networks provide results which are extremely accurate, within a small amount of time. However, there are still ways in which recommendations for clothes can be improved. We propose an event-based clothing recommendation system which uses object detection. We train a model to identify nine events/scenarios that a user might attend: White Wedding, Indian Wedding, Conference, Funeral, Red Carpet, Pool Party, Birthday, Graduation and Workout. We train another model to detect clothes out of fifty-three categories of clothes worn at the event. Object detection gives a mAP of 84.01. Nearest neighbors of the clothes detected are recommended to the user

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed

    Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks

    Full text link
    Sentiment analysis of online user generated content is important for many social media analytics tasks. Researchers have largely relied on textual sentiment analysis to develop systems to predict political elections, measure economic indicators, and so on. Recently, social media users are increasingly using images and videos to express their opinions and share their experiences. Sentiment analysis of such large scale visual content can help better extract user sentiments toward events or topics, such as those in image tweets, so that prediction of sentiment from visual content is complementary to textual sentiment analysis. Motivated by the needs in leveraging large scale yet noisy training data to solve the extremely challenging problem of image sentiment analysis, we employ Convolutional Neural Networks (CNN). We first design a suitable CNN architecture for image sentiment analysis. We obtain half a million training samples by using a baseline sentiment algorithm to label Flickr images. To make use of such noisy machine labeled data, we employ a progressive strategy to fine-tune the deep network. Furthermore, we improve the performance on Twitter images by inducing domain transfer with a small number of manually labeled Twitter images. We have conducted extensive experiments on manually labeled Twitter images. The results show that the proposed CNN can achieve better performance in image sentiment analysis than competing algorithms.Comment: 9 pages, 5 figures, AAAI 201
    corecore