20,069 research outputs found

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Principles and applications of CVD powder technology

    Get PDF
    Chemical vapor deposition (CVD) is an important technique for surface modification of powders through either grafting or deposition of films and coatings. The efficiency of this complex process primarily depends on appropriate contact between the reactive gas phase and the solid particles to be treated. Based on this requirement, the first part of this review focuses on the ways to ensure such contact and particularly on the formation of fluidized beds. Combination of constraints due to both fluidization and chemical vapor deposition leads to the definition of different types of reactors as an alternative to classical fluidized beds, such as spouted beds, circulating beds operating in turbulent and fast-transport regimes or vibro-fluidized beds. They operate under thermal but also plasma activation of the reactive gas and their design mainly depends on the type of powders to be treated. Modeling of both reactors and operating conditions is a valuable tool for understanding and optimizing these complex processes and materials. In the second part of the review, the state of the art on materials produced by fluidized bed chemical vapor deposition is presented. Beyond pioneering applications in the nuclear power industry, application domains, such as heterogeneous catalysis, microelectronics, photovoltaics and protection against wear, oxidation and heat are potentially concerned by processes involving chemical vapor deposition on powders. Moreover, simple and reduced cost FBCVD processes where the material to coat is immersed in the FB, allow the production of coatings for metals with different wear, oxidation and corrosion resistance. Finally, large-scale production of advanced nanomaterials is a promising area for the future extension and development of this technique

    Thermal and plasma-enhanced atomic layer deposition of yttrium oxide films and the properties of water wettability

    Get PDF
    The atomic layer deposition (ALD) of yttrium oxide (Y2O3) is investigated using the liquid precursor Y(EtCp)2(iPr-amd) as the yttrium source with thermal (H2O) and plasma-enhanced (H2O plasma and O2 plasma) processes, respectively. Saturation is confirmed for the growth of the Y2O3 films with each investigated reactant with a similar ALD window from 150 to 300 °C, albeit with a different growth rate. All of the as-deposited Y2O3 films are pure and smooth and have a polycrystalline cubic structure. The as-deposited Y2O3 films are hydrophobic with water contact angles >90°. The water contact angle gradually increased and the surface free energy gradually decreased as the film thickness increased, reaching a saturated value at a Y2O3 film thickness of ∼20 nm. The hydrophobicity was retained during post-ALD annealed at 500 °C in static air for 2 h. Exposure to polar and nonpolar solvents influences the Y2O3 water contact angle. The reported ALD process for Y2O3 films may find potential applications in the field of hydrophobic coatings

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered

    Sliver Solar Cells

    Get PDF
    Sliver solar cells are thin, mono-crystalline silicon solar cells, fabricated using micro-machining techniques combined with standard solar cell fabrication technology. Sliver solar modules can be efficient, low cost, bifacial, transparent, flexible, shadow-tolerant, and lightweight. Sliver modules require only 5 to 10% of the pure silicon and less than 5% of the wafer starts per MWp of factory output when compared with conventional photovoltaic modules. At ANU, we have produced 20% efficient Sliver solar cells using a robust, optimised cell fabrication process described in this paper. We have devised a rapid, reliable and simple method for extracting Sliver cells from a Sliver wafer, and methods for assembling modularised Sliver cell sub-modules. The method for forming these Sliver sub-modules, along with a low-cost method for rapidly forming reliable electrical interconnections, are presented. Using the sub-module approach, we describe low-cost methods for assembling and encapsulating Sliver cells into a range of module designs

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Compositional engineering of precursor inks for intense pulsed light compatible deposition of perovskite solar cells.

    Get PDF
    Perovskite solar cell (PSC) technology offers a promising alternative to silicon-based photovoltaics (PVs), but challenges of stability, module efficiency, and scalability hinder commercialization. This study aims to explore potential solutions to overcome scalability and cost limitations of PSCs, addressing technical barriers to commercialization. We adapt the conventional three-stage perovskite deposition process (deposition, translational phase formation, and annealing) for scalable platforms using wide-area depositions, meniscus coating methods, forced laminar airflow drying, and radiative annealing methods, making it more suitable for roll-to-roll fabrication. A technoeconomic analysis shows that large-scale operations can produce solar films at a cost of 0.040.04-0.10 per watt, making perovskite solar technology economically viable. Rapid thermal annealing (RTA) combined with rapid drying steps reduces processing time for blade-coated perovskite thin films, yielding a champion power conversion efficiency (PCE) of 14.58% for devices fabricated on flexible ITO-coated PET substrates. This study develops a mixed-cation perovskite ink with a robust coating window, utilizing compositional engineering and intense pulsed light (IPL) annealing. The resulting blade-coated, flexible mixed-cation PSCs on ITO-PET substrates achieved a champion PCE of 16.7% using IPL annealing. This work contributes to the commercialization of perovskite solar technologies by integrating compositional engineering and post-deposition treatments, and challenging conventional approaches to PSC fabrication. Radiative annealing techniques, such as RTA and IPL, offer scalable, rapid, and cost-effective production of PSCs, with potential to outpace silicon PV production and contribute to the global renewable energy landscape. Future research should focus on stability, module development, and durability testing under realistic operating conditions

    Function-led design of multifunctional stimuli-responsive superhydrophobic surface based on hierarchical graphene-titania nanocoating

    Full text link
    Multifunctional smart superhydrophobic surface with full-spectrum tunable wettability control is fabricated through the self-assembly of the graphene and titania nanofilm double-layer coating. Advanced microfluidic manipulative functions, including directional water transport, adhesion & spreading controls, droplet storage & transfer, and droplet sensing array, can be readily realized on this smart surface. An in-depth mechanism study regarding the underlying secrets of the tunable wettability and the UV-induced superhydrophilic conversion of anatase titania are also presented
    corecore