1,495 research outputs found

    Adaptive Backstepping Controller Design for Stochastic Jump Systems

    Get PDF
    In this technical note, we improve the results in a paper by Shi et al., in which problems of stochastic stability and sliding mode control for a class of linear continuous-time systems with stochastic jumps were considered. However, the system considered is switching stochastically between different subsystems, the dynamics of the jump system can not stay on each sliding surface of subsystems forever, therefore, it is difficult to determine whether the closed-loop system is stochastically stable. In this technical note, the backstepping techniques are adopted to overcome the problem in a paper by Shi et al.. The resulting closed-loop system is bounded in probability. It has been shown that the adaptive control problem for the Markovian jump systems is solvable if a set of coupled linear matrix inequalities (LMIs) have solutions. A numerical example is given to show the potential of the proposed techniques

    On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters

    Get PDF
    Copyright [2002] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we investigate the stochastic stabilization problem for a class of bilinear continuous time-delay uncertain systems with Markovian jumping parameters. Specifically, the stochastic bilinear jump system under study involves unknown state time-delay, parameter uncertainties, and unknown nonlinear deterministic disturbances. The jumping parameters considered here form a continuous-time discrete-state homogeneous Markov process. The whole system may be regarded as a stochastic bilinear hybrid system that includes both time-evolving and event-driven mechanisms. Our attention is focused on the design of a robust state-feedback controller such that, for all admissible uncertainties as well as nonlinear disturbances, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. Sufficient conditions are established to guarantee the existence of desired robust controllers, which are given in terms of the solutions to a set of either linear matrix inequalities (LMIs), or coupled quadratic matrix inequalities. The developed theory is illustrated by numerical simulatio

    Robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems via hybrid impulsive control

    Get PDF
    This paper investigates the problem of robust normalization and guaranteed cost control for a class of uncertain singular Markovian jump systems. The uncertainties exhibit in both system matrices and transition rate matrix of the Markovian chain. A new impulsive and proportional-derivative control strategy is presented, where the derivative gain is to make the closed-loop system of the singular plant to be a normal one, and the impulsive control part is to make the value of the Lyapunov function does not increase at each time instant of the Markovian switching. A linearization approach via congruence transformations is proposed to solve the controller design problem. The cost function is minimized via solving an optimization problem under the designed control scheme. Finally, three examples (two numerical examples and an RC pulse divider circuit example) are provided to illustrate the effectiveness and applicability of the proposed methods

    A looped-functional approach for robust stability analysis of linear impulsive systems

    Full text link
    A new functional-based approach is developed for the stability analysis of linear impulsive systems. The new method, which introduces looped-functionals, considers non-monotonic Lyapunov functions and leads to LMIs conditions devoid of exponential terms. This allows one to easily formulate dwell-times results, for both certain and uncertain systems. It is also shown that this approach may be applied to a wider class of impulsive systems than existing methods. Some examples, notably on sampled-data systems, illustrate the efficiency of the approach.Comment: 13 pages, 2 figures, Accepted at Systems & Control Letter

    Decentralized robust set-valued state estimation in networked multiple sensor systems

    Get PDF
    AbstractThis paper addresses a decentralized robust set-valued state estimation problem for a class of uncertain systems via a data-rate constrained sensor network. The uncertainties of the systems satisfy an energy-type constraint known as an integral quadratic constraint. The sensor network consists of spatially distributed sensors and a fusion center where set-valued state estimation is carried out. The communications from the sensors to the fusion center are through data-rate constrained communication channels. We propose a state estimation scheme which involves coders that are implemented in the sensors, and a decoder–estimator that is located at the fusion center. Their construction is based on the robust Kalman filtering techniques. The robust set-valued state estimation results of this paper involve the solution of a jump Riccati differential equation and the solution of a set of jump state equations
    corecore