1,506 research outputs found

    Control Of Rigid Robots With Large Uncertainties Using The Function Approximation Technique

    Get PDF
    This dissertation focuses on the control of rigid robots that cannot easily be modeled due to complexity and large uncertainties. The function approximation technique (FAT), which represents uncertainties as finite linear combinations of orthonormal basis functions, provides an alternate form of robot control - in situations where the dynamic equation cannot easily be modeled - with no dependency on the use of model information or training data. This dissertation has four aims - using the FAT - to improve controller efficiency and robustness in scenarios where reliable mathematical models cannot easily be derived or are otherwise unavailable. The first aim is to analyze the uncertain combination of a test robot and prosthesis in a scenario where the test robot and prosthesis are adequately controlled by different controllers - this is tied to efficiency. We develop a hybrid FAT controller, theoretically prove stability, and verify its performance using computer simulations. We show that systematically combining controllers can improve controller analysis and yield desired performance. In the second aim addressed in this dissertation, we investigate the simplification of the adaptive FAT controller complexity for ease of implementation - this is tied to efficiency. We achieve this by applying the passivity property and prove controller stability. We conduct computer simulations on a rigid robot under good and poor initial conditions to demonstrate the effectiveness of the controller. For an n degrees of freedom (DOFs) robot, we see a reduction of controller tuning parameters by 2n. The third aim addressed in this dissertation is the extension of the adaptive FAT controller to the robust control framework - this is tied to robustness. We invent a novel robust controller based on the FAT that uses continuous switching laws and eliminates the dependency on update laws. The controller, when compared against three state-of-the-art controllers via computer simulations and experimental tests on a rigid robot, shows good performance and robustness to fast time-varying uncertainties and random parameter perturbations. This introduces the first purely robust FAT-based controller. The fourth and final aim addressed in this dissertation is the development of a more compact form of the robust FAT controller developed in aim~3 - this is tied to efficiency and robustness. We investigate the simplification of the control structure and its applicability to a broader class of systems that can be modeled via the state-space approach. Computer simulations and experimental tests on a rigid robot demonstrate good controller performance and robustness to fast time-varying uncertainties and random parameter perturbations when compared to the robust FAT controller developed in aim 3. For an n-DOF robot, we see a reduction in the number of switching laws from 3 to 1

    A Model-Free Approach for Accurate Joint Motion Control in Humanoid Locomotion

    Get PDF
    A new model-free approach to precisely control humanoid robot joints is presented in this article. An input&-output online identification procedure will permit to compensate neglected or uncertain dynamics, such as, on the one hand, transmission and compliance nonlinear effects, and, on the other hand, network transmission delays. Robustness toparameter variations will be analyzed and compared to other advanced PID-based controllers. Simulations will show that not only good tracking quality can be obtained with this novel technique, but also that it provides a very robust behavior to the closed-loop system. Furthermore, a locomotion task will be tested in a complete humanoid simulatorto highlight the suitability of this control approach for such complex systems.This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid.Publicad

    Decentralized adaptive partitioned approximation control of high degrees-of-freedom robotic manipulators considering three actuator control modes

    Get PDF
    International audiencePartitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design a feedforward control term for improving the tracking accuracy of the desired references. In addition, consideration of actuator dynamics is important for a robot with high-velocity movement and highly varying loads. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. Three actuator control modes are considered in this study: (i) a torque control mode in which the armature current is well controlled by a current servo amplifier and the motor torque/current constant is known, (ii) a current control mode in which the torque/current constant is unknown, and (iii) a voltage control mode with no current servo control being available. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Two case studies are used to prove the validity of the proposed controller: a two-link manipulator and a six-link biped robot

    Adaptive RBF network control for robot manipulators

    Get PDF
    TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed network includes a hidden layer with one node, two inputs and a single output. In comparison with other model-free estimators such as multilayer neural networks and fuzzy systems, the proposed estimator is simpler, less computational and more effective. The weights of the RBF network are tuned online using an adaptation law derived by stability analysis. Despite the majority of previous control approaches which are the torque-based control, the proposed control design is the voltage-based control. Simulations and comparisons with a robust neural network control approach show the efficiency of the proposed control approach applied on the articulated robot manipulator driven by permanent magnet DC motors

    Upravljanje pozicijom električki pokretanog brzog površinskog vozila korištenjem unaprijedne projekcije izlazne povratne veze

    Get PDF
    Robust tracking is an issue of vital practical importance to the ship This paper addresses the design of a trajectory tracking controller for fast underactuated ships in the presence of model uncertainties without velocity measurements in the yaw and surge directions. An observer-based trajectory tracking controller is proposed for the fast underactuated ship model. Then, the dynamic surface control approach is effectively exploited to propose a tracking controller considering the actuator dynamics. Adaptive robust techniques are also adopted to cope with the parametric and non-parametric uncertainties in the fast underactuated ship model. A Lyapunov-based stability analysis is utilised to guarantee that tracking and state estimation errors are uniformly ultimately bounded. Simulation results are presented to illustrate the feasibility and efficiency of the proposed controller.Robusno praćenje je pitanje od vitalnog praktičnog značaja za brod. Ovaj se rad bavi projektiranjem regulatora za praćenje trajektorije za brze podaktuirane brodove s modelima nesigurnosti bez mjerenja brzine u smjerovima zaošijanja i uzdužnog napredovanja. Regulator za praćenje putanje zasnovan na observeru predložen je za brz podaktuiran model broda. Upravljanje površinskom dinamikom je učinkovito iskorišteno kako bi se predložio regulatora za praćenje trajektorije s obzirom na dinamiku aktuatora. Također su primjenjene adaptivne robusne tehnike kako bi se nosile sa parametarskim i neparametarskim nesigurnostima u modelu brzog podaktuiranoga broda. Analiza stabilnosti temeljena na Lyapunovu se koristi kako bi se zajamčilo da se pogreške praćenja i estimacije stanja adaptivne robusne tehnike također usvajaju kako bi se nosile s parametarskim i neparametarskim nesigurnostima u brzom neaktivnom brodskom modelu. Analiza stabilnosti temeljena na Lyapunovu se koristi kako bi se zajamčilo da su pogreške praćenja i procjene stanja jednoliko konačno ograničene. Prikazani su simulacijski rezultati koji ilustriraju izvedivost i učinkovitost predloženog regulatora

    Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

    Get PDF
    This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimation error using a gradient descent algorithm. The proposed discrete control is robust against all uncertainties as verified by stability analysis. The proposed robust control law is simulated on a SCARA robot driven by permanent magnet dc motors. Simulation results show the effectiveness of the control approach

    Robust control for a wheeled mobile robot to track a predefined trajectory in the presence of unknown wheel slips

    Get PDF
    In this paper, a robust controller for a nonholonomic wheeled mobile robot (WMR) is proposed for tracking a predefined trajectory in the presence of unknown wheel slips, bounded external disturbances, and model uncertainties. The whole control system consists of two closed loops. Specifically, the outer one is employed to control the kinematics, and the inner one is used to control the dynamics. The output of kinematic controller is adopted as the input of the inner (dynamic) closed loop. Furthermore, two robust techniques were utilized to assure the robustness. In particular, one is used in the kinematic controller to compensate the harmful effects of the unknown wheel slips, and the other is used in the dynamic controller to overcome the model uncertainties and bounded external disturbances. Thanks to this proposed controller, a desired tracking performance in which tracking errors converge asymptotically to zero is obtained. According to Lyapunov theory and LaSalle extension, the desired tracking performance is guaranteed to be achieved. The results of computer simulation have shown the validity and efficiency of the proposed controller

    Dinamički odziv nove adaptivne modificirane povratne Legendrove neuronske mreže upravljanja sinkronim motorom s permanentnim magnetima za električni skuter

    Get PDF
    Because an electric scooter driven by permanent magnet synchronous motor (PMSM) servo-driven system has the unknown nonlinearity and the time-varying characteristics, its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, a novel adaptive modified recurrent Legendre neural network (NN) control system, which has fast convergence and provide high accuracy, is proposed to control for PMSM servo-driven electric scooter under the external disturbances and parameter variations in this study. The novel adaptive modified recurrent Legendre NN control system consists of a modified recurrent Legendre NN control with adaptation law and a remunerated control with estimation law. In addition, the online parameter tuning methodology of the modified recurrent Legendre NN control and the estimation law of the remunerated control can be derived by using the Lyapunov stability theorem and the gradient descent method. Furthermore, the modified recurrent Legendre NN with variable learning rate is proposed to raise convergence speed. Finally, comparative studies are demonstrated by experimental results in order to show the effectiveness of the proposed control scheme.S obzirom da električni skuter pogonjen servo sustavom sa sinkroni motor s permanentnim magnetima ima nelinearnu dinamiku i vremenski promjenjive parametre, njegov dinamički model nije jednostavno odrediti u svrhu dizajniranja linearnog regulatora. Kako bi se riješio taj problem te povećala robusnost predložen je sustav upravljanja korištenjem adaptivne modificirane povratne Legendrove neuronske mreže za upravljanje skuterom pogonjenim servo sustavom sa sinkronim motorom uz prisustvo vanjskog poremećaja i promjenjivih parametara. Predloženo upravljanje ima brzu konvergenciju i visoku preciznost. Sustav upravljanja sastoji se od modificirane povratne Legendrove neuronske moreže s adaptivnim zakonom upravljanja i estimacijom. Dodatno, \u27on-line\u27 podešavanje parametara takvog sustava može se dobiti korištenjem Ljapunovljevog teorema o stabilnosti sustava i gradijente metode. Modificirana povratne Legendrove neuronska mreža s promjenjivim vremenom učenja predložena je za povećanje brzine konvergencije. Ispravnost predložene sheme upravljanja provjerena je eksperimentalno
    corecore