17,359 research outputs found

    A Novel Fuzzy Logic Based Adaptive Supertwisting Sliding Mode Control Algorithm for Dynamic Uncertain Systems

    Full text link
    This paper presents a novel fuzzy logic based Adaptive Super-twisting Sliding Mode Controller for the control of dynamic uncertain systems. The proposed controller combines the advantages of Second order Sliding Mode Control, Fuzzy Logic Control and Adaptive Control. The reaching conditions, stability and robustness of the system with the proposed controller are guaranteed. In addition, the proposed controller is well suited for simple design and implementation. The effectiveness of the proposed controller over the first order Sliding Mode Fuzzy Logic controller is illustrated by Matlab based simulations performed on a DC-DC Buck converter. Based on this comparison, the proposed controller is shown to obtain the desired transient response without causing chattering and error under steady-state conditions. The proposed controller is able to give robust performance in terms of rejection to input voltage variations and load variations.Comment: 14 page

    Adaptive MIMO Fuzzy Compensate Fuzzy Sliding Mode Algorithm: Applied to Second Order Nonlinear System.

    Get PDF
    This research is focused on proposed adaptive fuzzy sliding mode algorithms with the adaptation laws derived in the Lyapunov sense. The stability of the closed-loop system is proved mathematically based on the Lyapunov method. Adaptive MIMO fuzzy compensate fuzzy sliding mode method design a MIMO fuzzy system to compensate for the model uncertainties of the system, and chattering also solved by linear saturation method. Since there is no tuning method to adjust the premise part of fuzzy rules so we presented a scheme to online tune consequence part of fuzzy rules. Classical sliding mode control is robust to control model uncertainties and external disturbances. A sliding mode method with a switching control low guarantees the stability of the certain and/or uncertain system, but the addition of the switching control low introduces chattering into the system. One way to reduce or eliminate chattering is to insert a boundary layer method inside of a boundary layer around the sliding surface. Classical sliding mode control method has difficulty in handling unstructured model uncertainties. One can overcome this problem by combining a sliding mode controller and artificial intelligence (e.g. fuzzy logic). To approximate a timevarying nonlinear dynamic system, a fuzzy system requires a large amount of fuzzy rule base. This large number of fuzzy rules will cause a high computation load. The addition of an adaptive law to a fuzzy sliding mode controller to online tune the parameters of the fuzzy rules in use will ensure a moderate computational load. The adaptive laws in this algorithm are designed based on the Lyapunov stability theorem. Asymptotic stability of the closed loop system is also proved in the sense of Lyapunov

    Robust Fuzzy Sliding Mode Controller for Discrete Nonlinear Systems

    Get PDF
    In this work we are interested to discrete robust fuzzy sliding mode control. The discrete SISO nonlinear uncertain system is presented by the Takgi- Sugeno type fuzzy model state. We recall the principle of the sliding mode control theory then we combine the fuzzy systems with the sliding mode control technique to compute at each sampling time the control law. The control law comports two terms: equivalent control law and switching control law which has a high frequency. The uncertainty is replaced by its upper bound. Inverted pendulum and mass spring dumper are used to check performance of the proposed fuzzy robust sliding mode control scheme

    Sliding mode control of robotics systems actuated by pneumatic muscles.

    Get PDF
    This dissertation is concerned with investigating robust approaches for the control of pneumatic muscle systems. Pneumatic muscle is a novel type of actuator. Besides having a high ratio of power to weight and flexible control of movement, it also exhibits many analogical behaviors to natural skeletal muscle, which makes them the ideal candidate for applications of anthropomorphic robotic systems. In this dissertation, a new phenomenological model of pneumatic muscle developed in the Human Sensory Feedback Laboratory at Wright Patterson Air Force Base is investigated. The closed loop stability of a one-link planar arm actuated by two pneumatic muscles using linear state feedback is proved. Robotic systems actuated by pneumatic muscles are time-varying and nonlinear due to load variations and uncertainties of system parameters caused by the effects of heat. Sliding mode control has the advantage that it can provide robust control performance in the presence of model uncertainties. Therefore, it is mainly utilized and further complemented with other control methods in this dissertation to design the appropriate controller to perform the tasks commanded by system operation. First, a sliding mode controller is successfully proposed to track the elbow angle with bounded error in a one-Joint limb system with pneumatic muscles in bicep/tricep configuration. Secondly, fuzzy control, which aims to dynamically adjust the sliding surface, is used along with sliding mode control. The so-called fuzzy sliding mode control method is applied to control the motion of the end-effector in a two-Joint planar arm actuated by four groups of pneumatic muscles. Through computer simulation, the fuzzy sliding mode control shows very good tracking accuracy superior to nonfuzzy sliding mode control. Finally, a two-joint planar arm actuated by four groups of pneumatic muscles operated in an assumed industrial environment is presented. Based on the model, an integral sliding mode control scheme is proposed as an ultimate solution to the control of systems actuated by pneumatic muscles. As the theoretical proof and computer simulations show, the integral sliding mode controller, with strong robustness to model uncertainties and external perturbations, is superior for performing the commanded control assignment. Based on the investigation in this dissertation, integral sliding mode control proposed here is a very promising robust control approach to handle systems actuated by pneumatic muscles

    Input-output linearization of DC-DC converter with discrete sliding mode fuzzy control strategy

    Get PDF
    The major thrust of the paper is on designing a fuzzy logic approach has been combined with a well-known robust technique discrete sliding mode control (DSMC) to develop a new strategy for discrete sliding mode fuzzy control (DSMFC) in direct current (DC-DC) converter. Proposed scheme requires human expertise in the design of the rule base and is inherently stable. It also overcomes the limitation of DSMC, which requires bounds of uncertainty to be known for development of a DSMC control law. The scheme is also applicable to higher order systems unlike model following fuzzy control, where formation of rule base becomes difficult with rise in number of error and error derivative inputs. In this paper the linearization of input-output performance is carried out by the DSMFC algorithm for boost converter. The DSMFC strategy minimizes the chattering problem faced by the DSMC. The simulated performance of a discrete sliding mode fuzzy controller is studied and the results are investigated

    Adaptive Sliding Mode Control Based on Fuzzy Logic and Low Pass Filter for Two-Tank Interacting System

    Get PDF
    An adaptive sliding mode control (SMC) based on fuzzy logic and low pass filter is designed in this research. The SMC is one of the most widely accepted robust control techniques. However, the main disadvantage of the SMC is chattering phenomena, which inhibits its usage in many practical applications. Fuzzy logic control has supplanted conventional techniques in many applications. A major feature of fuzzy logic is the ability to express the amount of ambiguity in individual perception and human thinking. In this study, a fuzzy inference system is applied to approximate the function in the SMC law. A low pass filter is used to reduce chattering phenomena around the sliding surface. The stability of the control system is proved by the Lyapunov theory. The proposed controller is tested to position tracking control for two-tank interacting system. This system has been applied in process industries like petroleum refineries, chemical, paper industries, water treatment industries. Simulation results in MATLAB/Simulink show that the proposed algorithm is more effective than the sliding mode control, sliding mode control using conditional integrators and fuzzy control without steady-state error, the overshoot is 0 (%), the rising time achieves 2.187 (s) and the settling time is about 3.9133(s)

    Design of Adaptive Sliding Mode Fuzzy Control for Robot Manipulator Based on Extended Kalman Filter

    Get PDF
    In this work, a new adaptive motion control scheme for robust performance control of robot manipulators is presented. The proposed scheme is designed by combining the fuzzy logic control with the sliding mode control based on extended Kalman filter. Fuzzy logic controllers have been used successfully in many applications and were shown to be superior to the classical controllers for some nonlinear systems. Sliding mode control is a powerful approach for controlling nonlinear and uncertain systems. It is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances, provided that the bounds of these uncertainties and disturbances are known. We have designed a new adaptive Sliding Mode Fuzzy Control (SMFC) method that requires only position measurements. These measurements and the input torques are used in an extended Kalman filter (EKF) to estimate the inertial parameters of the full nonlinear robot model as well as the joint positions and velocities. These estimates are used by the SMFC to generate the input torques. The combination of the EKF and the SMFC is shown to result in a stable adaptive control scheme called trajectory-tracking adaptive robot with extended Kalman (TAREK) method. The theory behind TAREK method provides clear guidelines on the selection of the design parameters for the controller. The proposed controller is applied to a two-link robot manipulator. Computer simulations show the robust performance of the proposed scheme
    corecore