1,396 research outputs found

    Lesion boundary segmentation using level set methods

    Get PDF
    This paper addresses the issue of accurate lesion segmentation in retinal imagery, using level set methods and a novel stopping mechanism - an elementary features scheme. Specifically, the curve propagation is guided by a gradient map built using a combination of histogram equalization and robust statistics. The stopping mechanism uses elementary features gathered as the curve deforms over time, and then using a lesionness measure, defined herein, ’looks back in time’ to find the point at which the curve best fits the real object. We implement the level set using a fast upwind scheme and compare the proposed method against five other segmentation algorithms performed on 50 randomly selected images of exudates with a database of clinician marked-up boundaries as ground truth

    Segmentation of images by color features: a survey

    Get PDF
    En este articulo se hace la revisiĂłn del estado del arte sobre la segmentaciĂłn de imagenes de colorImage segmentation is an important stage for object recognition. Many methods have been proposed in the last few years for grayscale and color images. In this paper, we present a deep review of the state of the art on color image segmentation methods; through this paper, we explain the techniques based on edge detection, thresholding, histogram-thresholding, region, feature clustering and neural networks. Because color spaces play a key role in the methods reviewed, we also explain in detail the most commonly color spaces to represent and process colors. In addition, we present some important applications that use the methods of image segmentation reviewed. Finally, a set of metrics frequently used to evaluate quantitatively the segmented images is shown

    Color image segmentation using saturated RGB colors and decoupling the intensity from the hue

    Get PDF
    Although the RGB space is accepted to represent colors, it is not adequate for color processing. In related works the colors are usually mapped to other color spaces more suitable for color processing, but it may imply an important computational load because of the non-linear operations involved to map the colors between spaces; nevertheless, it is common to find in the state-of-the-art works using the RGB space. In this paper we introduce an approach for color image segmentation, using the RGB space to represent and process colors; where the chromaticity and the intensity are processed separately, mimicking the human perception of color, reducing the underlying sensitiveness to intensity of the RGB space. We show the hue of colors can be processed by training a self-organizing map with chromaticity samples of the most saturated colors, where the training set is small but very representative; once the neural network is trained it can be employed to process any given image without training it again. We create an intensity channel by extracting the magnitudes of the color vectors; by using the Otsu method, we compute the threshold values to divide the intensity range in three classes. We perform experiments with the Berkeley segmentation database; in order to show the benefits of our proposal, we perform experiments with a neural network trained with different colors by subsampling the RGB space, where the chromaticity and the intensity are processed jointly. We evaluate and compare quantitatively the segmented images obtained with both approaches. We claim to obtain competitive results with respect to related works

    Grounding semantics in robots for Visual Question Answering

    Get PDF
    In this thesis I describe an operational implementation of an object detection and description system that incorporates in an end-to-end Visual Question Answering system and evaluated it on two visual question answering datasets for compositional language and elementary visual reasoning

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    A Statistical Modeling Approach to Computer-Aided Quantification of Dental Biofilm

    Full text link
    Biofilm is a formation of microbial material on tooth substrata. Several methods to quantify dental biofilm coverage have recently been reported in the literature, but at best they provide a semi-automated approach to quantification with significant input from a human grader that comes with the graders bias of what are foreground, background, biofilm, and tooth. Additionally, human assessment indices limit the resolution of the quantification scale; most commercial scales use five levels of quantification for biofilm coverage (0%, 25%, 50%, 75%, and 100%). On the other hand, current state-of-the-art techniques in automatic plaque quantification fail to make their way into practical applications owing to their inability to incorporate human input to handle misclassifications. This paper proposes a new interactive method for biofilm quantification in Quantitative light-induced fluorescence (QLF) images of canine teeth that is independent of the perceptual bias of the grader. The method partitions a QLF image into segments of uniform texture and intensity called superpixels; every superpixel is statistically modeled as a realization of a single 2D Gaussian Markov random field (GMRF) whose parameters are estimated; the superpixel is then assigned to one of three classes (background, biofilm, tooth substratum) based on the training set of data. The quantification results show a high degree of consistency and precision. At the same time, the proposed method gives pathologists full control to post-process the automatic quantification by flipping misclassified superpixels to a different state (background, tooth, biofilm) with a single click, providing greater usability than simply marking the boundaries of biofilm and tooth as done by current state-of-the-art methods.Comment: 10 pages, 7 figures, Journal of Biomedical and Health Informatics 2014. keywords: {Biomedical imaging;Calibration;Dentistry;Estimation;Image segmentation;Manuals;Teeth}, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6758338&isnumber=636350
    • …
    corecore