17,323 research outputs found

    A Semi-Supervised Self-Organizing Map with Adaptive Local Thresholds

    Full text link
    In the recent years, there is a growing interest in semi-supervised learning, since, in many learning tasks, there is a plentiful supply of unlabeled data, but insufficient labeled ones. Hence, Semi-Supervised learning models can benefit from both types of data to improve the obtained performance. Also, it is important to develop methods that are easy to parameterize in a way that is robust to the different characteristics of the data at hand. This article presents a new method based on Self-Organizing Map (SOM) for clustering and classification, called Adaptive Local Thresholds Semi-Supervised Self-Organizing Map (ALTSS-SOM). It can dynamically switch between two forms of learning at training time, according to the availability of labels, as in previous models, and can automatically adjust itself to the local variance observed in each data cluster. The results show that the ALTSS-SOM surpass the performance of other semi-supervised methods in terms of classification, and other pure clustering methods when there are no labels available, being also less sensitive than previous methods to the parameters values

    Contextual Attention for Hand Detection in the Wild

    Get PDF
    We present Hand-CNN, a novel convolutional network architecture for detecting hand masks and predicting hand orientations in unconstrained images. Hand-CNN extends MaskRCNN with a novel attention mechanism to incorporate contextual cues in the detection process. This attention mechanism can be implemented as an efficient network module that captures non-local dependencies between features. This network module can be inserted at different stages of an object detection network, and the entire detector can be trained end-to-end. We also introduce large-scale annotated hand datasets containing hands in unconstrained images for training and evaluation. We show that Hand-CNN outperforms existing methods on the newly collected datasets and the publicly available PASCAL VOC human layout dataset. Data and code: https://www3.cs.stonybrook.edu/~cvl/projects/hand_det_attention

    Contextual Attention for Hand Detection in the Wild

    Get PDF
    We present Hand-CNN, a novel convolutional network architecture for detecting hand masks and predicting hand orientations in unconstrained images. Hand-CNN extends MaskRCNN with a novel attention mechanism to incorporate contextual cues in the detection process. This attention mechanism can be implemented as an efficient network module that captures non-local dependencies between features. This network module can be inserted at different stages of an object detection network, and the entire detector can be trained end-to-end. We also introduce a large-scale annotated hand dataset containing hands in unconstrained images for training and evaluation. We show that Hand-CNN outperforms existing methods on several datasets, including our hand detection benchmark and the publicly available PASCAL VOC human layout challenge. We also conduct ablation studies on hand detection to show the effectiveness of the proposed contextual attention module.Comment: 9 pages, 9 figure

    Increasing pattern recognition accuracy for chemical sensing by evolutionary based drift compensation

    Get PDF
    Artificial olfaction systems, which mimic human olfaction by using arrays of gas chemical sensors combined with pattern recognition methods, represent a potentially low-cost tool in many areas of industry such as perfumery, food and drink production, clinical diagnosis, health and safety, environmental monitoring and process control. However, successful applications of these systems are still largely limited to specialized laboratories. Sensor drift, i.e., the lack of a sensor's stability over time, still limits real in dustrial setups. This paper presents and discusses an evolutionary based adaptive drift-correction method designed to work with state-of-the-art classification systems. The proposed approach exploits a cutting-edge evolutionary strategy to iteratively tweak the coefficients of a linear transformation which can transparently correct raw sensors' measures thus mitigating the negative effects of the drift. The method learns the optimal correction strategy without the use of models or other hypotheses on the behavior of the physical chemical sensors

    Social Categories are Natural Kinds, not Objective Types (and Why it Matters Politically)

    Get PDF
    There is growing support for the view that social categories like men and women refer to ā€œobjective typesā€ (Haslanger 2000, 2006, 2012; Alcoff 2005). An objective type is a similarity class for which the axis of similarity is an objective rather than nominal or fictional property. Such types are independently real and causally relevant, yet their unity does not derive from an essential property. Given this tandem of features, it is not surprising why empirically-minded researchers interested in fighting oppression and marginalization have found this ontological category so attractive: objective types have the ontological credentials to secure the reality (and thus political representation) of social categories, and yet they do not impose exclusionary essences that also naturalize and legitimize social inequalities. This essay argues that, from the perspective of these political goals of fighting oppression and marginalization, the category of objective types is in fact a Trojan horse; it looks like a gift, but it ends up creating trouble. I argue that objective type classifications often lack empirical adequacy, and as a result they lack political adequacy. I also provide, and in reference to the normative goals described above, several arguments for preferring a social ontology of natural kinds with historical essences

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Survey on Leveraging Uncertainty Estimation Towards Trustworthy Deep Neural Networks: The Case of Reject Option and Post-training Processing

    Full text link
    Although neural networks (especially deep neural networks) have achieved \textit{better-than-human} performance in many fields, their real-world deployment is still questionable due to the lack of awareness about the limitation in their knowledge. To incorporate such awareness in the machine learning model, prediction with reject option (also known as selective classification or classification with abstention) has been proposed in literature. In this paper, we present a systematic review of the prediction with the reject option in the context of various neural networks. To the best of our knowledge, this is the first study focusing on this aspect of neural networks. Moreover, we discuss different novel loss functions related to the reject option and post-training processing (if any) of network output for generating suitable measurements for knowledge awareness of the model. Finally, we address the application of the rejection option in reducing the prediction time for the real-time problems and present a comprehensive summary of the techniques related to the reject option in the context of extensive variety of neural networks. Our code is available on GitHub: \url{https://github.com/MehediHasanTutul/Reject_option

    Signal and data processing for machine olfaction and chemical sensing: A review

    Get PDF
    Signal and data processing are essential elements in electronic noses as well as in most chemical sensing instruments. The multivariate responses obtained by chemical sensor arrays require signal and data processing to carry out the fundamental tasks of odor identification (classification), concentration estimation (regression), and grouping of similar odors (clustering). In the last decade, important advances have shown that proper processing can improve the robustness of the instruments against diverse perturbations, namely, environmental variables, background changes, drift, etc. This article reviews the advances made in recent years in signal and data processing for machine olfaction and chemical sensing
    • ā€¦
    corecore