22,028 research outputs found

    What Users Ask a Search Engine: Analyzing One Billion Russian Question Queries

    Full text link
    We analyze the question queries submitted to a large commercial web search engine to get insights about what people ask, and to better tailor the search results to the users’ needs. Based on a dataset of about one billion question queries submitted during the year 2012, we investigate askers’ querying behavior with the support of automatic query categorization. While the importance of question queries is likely to increase, at present they only make up 3–4% of the total search traffic. Since questions are such a small part of the query stream and are more likely to be unique than shorter queries, clickthrough information is typically rather sparse. Thus, query categorization methods based on the categories of clicked web documents do not work well for questions. As an alternative, we propose a robust question query classification method that uses the labeled questions from a large community question answering platform (CQA) as a training set. The resulting classifier is then transferred to the web search questions. Even though questions on CQA platforms tend to be different to web search questions, our categorization method proves competitive with strong baselines with respect to classification accuracy. To show the scalability of our proposed method we apply the classifiers to about one billion question queries and discuss the trade-offs between performance and accuracy that different classification models offer. Our findings reveal what people ask a search engine and also how this contrasts behavior on a CQA platform

    ICE: Enabling Non-Experts to Build Models Interactively for Large-Scale Lopsided Problems

    Full text link
    Quick interaction between a human teacher and a learning machine presents numerous benefits and challenges when working with web-scale data. The human teacher guides the machine towards accomplishing the task of interest. The learning machine leverages big data to find examples that maximize the training value of its interaction with the teacher. When the teacher is restricted to labeling examples selected by the machine, this problem is an instance of active learning. When the teacher can provide additional information to the machine (e.g., suggestions on what examples or predictive features should be used) as the learning task progresses, then the problem becomes one of interactive learning. To accommodate the two-way communication channel needed for efficient interactive learning, the teacher and the machine need an environment that supports an interaction language. The machine can access, process, and summarize more examples than the teacher can see in a lifetime. Based on the machine's output, the teacher can revise the definition of the task or make it more precise. Both the teacher and the machine continuously learn and benefit from the interaction. We have built a platform to (1) produce valuable and deployable models and (2) support research on both the machine learning and user interface challenges of the interactive learning problem. The platform relies on a dedicated, low-latency, distributed, in-memory architecture that allows us to construct web-scale learning machines with quick interaction speed. The purpose of this paper is to describe this architecture and demonstrate how it supports our research efforts. Preliminary results are presented as illustrations of the architecture but are not the primary focus of the paper

    Contextual Outlier Interpretation

    Full text link
    Outlier detection plays an essential role in many data-driven applications to identify isolated instances that are different from the majority. While many statistical learning and data mining techniques have been used for developing more effective outlier detection algorithms, the interpretation of detected outliers does not receive much attention. Interpretation is becoming increasingly important to help people trust and evaluate the developed models through providing intrinsic reasons why the certain outliers are chosen. It is difficult, if not impossible, to simply apply feature selection for explaining outliers due to the distinct characteristics of various detection models, complicated structures of data in certain applications, and imbalanced distribution of outliers and normal instances. In addition, the role of contrastive contexts where outliers locate, as well as the relation between outliers and contexts, are usually overlooked in interpretation. To tackle the issues above, in this paper, we propose a novel Contextual Outlier INterpretation (COIN) method to explain the abnormality of existing outliers spotted by detectors. The interpretability for an outlier is achieved from three aspects: outlierness score, attributes that contribute to the abnormality, and contextual description of its neighborhoods. Experimental results on various types of datasets demonstrate the flexibility and effectiveness of the proposed framework compared with existing interpretation approaches

    An examination of automatic video retrieval technology on access to the contents of an historical video archive

    Get PDF
    Purpose – This paper aims to provide an initial understanding of the constraints that historical video collections pose to video retrieval technology and the potential that online access offers to both archive and users. Design/methodology/approach – A small and unique collection of videos on customs and folklore was used as a case study. Multiple methods were employed to investigate the effectiveness of technology and the modality of user access. Automatic keyframe extraction was tested on the visual content while the audio stream was used for automatic classification of speech and music clips. The user access (search vs browse) was assessed in a controlled user evaluation. A focus group and a survey provided insight on the actual use of the analogue archive. The results of these multiple studies were then compared and integrated (triangulation). Findings – The amateur material challenged automatic techniques for video and audio indexing, thus suggesting that the technology must be tested against the material before deciding on a digitisation strategy. Two user interaction modalities, browsing vs searching, were tested in a user evaluation. Results show users preferred searching, but browsing becomes essential when the search engine fails in matching query and indexed words. Browsing was also valued for serendipitous discovery; however the organisation of the archive was judged cryptic and therefore of limited use. This indicates that the categorisation of an online archive should be thought of in terms of users who might not understand the current classification. The focus group and the survey showed clearly the advantage of online access even when the quality of the video surrogate is poor. The evidence gathered suggests that the creation of a digital version of a video archive requires a rethinking of the collection in terms of the new medium: a new archive should be specially designed to exploit the potential that the digital medium offers. Similarly, users' needs have to be considered before designing the digital library interface, as needs are likely to be different from those imagined. Originality/value – This paper is the first attempt to understand the advantages offered and limitations held by video retrieval technology for small video archives like those often found in special collections

    Part of Speech Based Term Weighting for Information Retrieval

    Full text link
    Automatic language processing tools typically assign to terms so-called weights corresponding to the contribution of terms to information content. Traditionally, term weights are computed from lexical statistics, e.g., term frequencies. We propose a new type of term weight that is computed from part of speech (POS) n-gram statistics. The proposed POS-based term weight represents how informative a term is in general, based on the POS contexts in which it generally occurs in language. We suggest five different computations of POS-based term weights by extending existing statistical approximations of term information measures. We apply these POS-based term weights to information retrieval, by integrating them into the model that matches documents to queries. Experiments with two TREC collections and 300 queries, using TF-IDF & BM25 as baselines, show that integrating our POS-based term weights to retrieval always leads to gains (up to +33.7% from the baseline). Additional experiments with a different retrieval model as baseline (Language Model with Dirichlet priors smoothing) and our best performing POS-based term weight, show retrieval gains always and consistently across the whole smoothing range of the baseline
    corecore