227,374 research outputs found

    Structure-Aware Classification using Supervised Dictionary Learning

    Full text link
    In this paper, we propose a supervised dictionary learning algorithm that aims to preserve the local geometry in both dimensions of the data. A graph-based regularization explicitly takes into account the local manifold structure of the data points. A second graph regularization gives similar treatment to the feature domain and helps in learning a more robust dictionary. Both graphs can be constructed from the training data or learned and adapted along the dictionary learning process. The combination of these two terms promotes the discriminative power of the learned sparse representations and leads to improved classification accuracy. The proposed method was evaluated on several different datasets, representing both single-label and multi-label classification problems, and demonstrated better performance compared with other dictionary based approaches

    Malware Classification based on Call Graph Clustering

    Full text link
    Each day, anti-virus companies receive tens of thousands samples of potentially harmful executables. Many of the malicious samples are variations of previously encountered malware, created by their authors to evade pattern-based detection. Dealing with these large amounts of data requires robust, automatic detection approaches. This paper studies malware classification based on call graph clustering. By representing malware samples as call graphs, it is possible to abstract certain variations away, and enable the detection of structural similarities between samples. The ability to cluster similar samples together will make more generic detection techniques possible, thereby targeting the commonalities of the samples within a cluster. To compare call graphs mutually, we compute pairwise graph similarity scores via graph matchings which approximately minimize the graph edit distance. Next, to facilitate the discovery of similar malware samples, we employ several clustering algorithms, including k-medoids and DBSCAN. Clustering experiments are conducted on a collection of real malware samples, and the results are evaluated against manual classifications provided by human malware analysts. Experiments show that it is indeed possible to accurately detect malware families via call graph clustering. We anticipate that in the future, call graphs can be used to analyse the emergence of new malware families, and ultimately to automate implementation of generic detection schemes.Comment: This research has been supported by TEKES - the Finnish Funding Agency for Technology and Innovation as part of its ICT SHOK Future Internet research programme, grant 40212/0

    Graph Scaling Cut with L1-Norm for Classification of Hyperspectral Images

    Full text link
    In this paper, we propose an L1 normalized graph based dimensionality reduction method for Hyperspectral images, called as L1-Scaling Cut (L1-SC). The underlying idea of this method is to generate the optimal projection matrix by retaining the original distribution of the data. Though L2-norm is generally preferred for computation, it is sensitive to noise and outliers. However, L1-norm is robust to them. Therefore, we obtain the optimal projection matrix by maximizing the ratio of between-class dispersion to within-class dispersion using L1-norm. Furthermore, an iterative algorithm is described to solve the optimization problem. The experimental results of the HSI classification confirm the effectiveness of the proposed L1-SC method on both noisy and noiseless data.Comment: European Signal Processing Conference 201

    Robust Mid-Pass Filtering Graph Convolutional Networks

    Full text link
    Graph convolutional networks (GCNs) are currently the most promising paradigm for dealing with graph-structure data, while recent studies have also shown that GCNs are vulnerable to adversarial attacks. Thus developing GCN models that are robust to such attacks become a hot research topic. However, the structural purification learning-based or robustness constraints-based defense GCN methods are usually designed for specific data or attacks, and introduce additional objective that is not for classification. Extra training overhead is also required in their design. To address these challenges, we conduct in-depth explorations on mid-frequency signals on graphs and propose a simple yet effective Mid-pass filter GCN (Mid-GCN). Theoretical analyses guarantee the robustness of signals through the mid-pass filter, and we also shed light on the properties of different frequency signals under adversarial attacks. Extensive experiments on six benchmark graph data further verify the effectiveness of our designed Mid-GCN in node classification accuracy compared to state-of-the-art GCNs under various adversarial attack strategies.Comment: Accepted by WWW'2
    • …
    corecore