73 research outputs found

    Thermal Baths as Quantum Resources: More Friends than Foes?

    Full text link
    In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate "quantumness" in the system-bath compound. To this end, three possible approaches have been pursued by us: (i) Control of a quantum system faster than the correlation time of the bath to which it couples: Such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: This approach, based on field -atom coupling control in cavities, waveguides and photonic band structures, allows to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: This approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are "more friends than foes" in quantum technologies.Comment: 27 pages, 17 figure

    Quantum information processing and measurement in circuit quantum electrodynamics

    Get PDF
    In this thesis, experimentally relevant aspects and open questions of quantum information processing and measurement in circuit quantum electrodynamics have been investigated theoretically. Circuit quantum electrodynamics is a relatively young field combining superconducting transmission line resonators on-chip with superconducting quantum bits which serve as artificial atoms. Remarkable experiments have underlined the prospects of circuit QED as a possible architecture for quantum information processing as well as a framework within which quantum optics experiments can be performed. In contrast to their optical counterparts, these experiments reach the ultra-strong coupling limit and allow e.g. the generation of Fock states, the study of decoherence and the observation of quantum jumps. We present the physics of superconducting circuits based on the Josephson junction as a non-linear circuit element. We discuss the various types of quantum bits (qubits) before turning to an introduction on cavity QED and conclude the introduction with a brief presentation of the most relevant experiments and a short introduction to the principles and prospects of quantum information processing. Building on the pioneering theoretical and experimental work in which up to three qubits have been integrated on a chip and successfully coupled via a cavity mode, we propose a scheme to overcome the natural limits concerning scalability in these systems. Usually, scalability is severely limited by the resonance width of the qubit transitions and the attainable frequency range for both qubit transition and cavity resonance frequencies. This limits the present setups to at most ten qubits. As a possible solution, we propose and investigate a cross-bar grid layout of cavities with qubits at the intersections. It turns out that this setup, allowing for up to about 1000 qubits, offers significant advantages over e.g. nearest-neighbor coupling schemes. In addition, it can serve as a building block for a truly scalable scheme for fault-tolerant quantum information processing with superconducting circuits by combining 7x7 arrays in a staircase manner. Furthermore, we discuss and simulate different possibilities to improve upon the suggested scheme by e.g. using resonant gates and optimal control theory. Another focus of the present thesis is measurement physics. In order to investigate e.g. the possibilities of using a circuit QED system to dispersively detect single microwave photons or to generate multi-qubit entangled states, we introduce in a pedagogical manner the basics of stochastic master equations which generate quantum trajectories before turning to concrete applications. Quantum trajectories have proven to be a state-of-the-art tool to analyze measurement situations in a very realistic manner by giving access to both the measurement record as well as the internal quantum dynamics conditioned on this record. Using the method of quantum trajectories as generated by stochastic master equations, we discuss a scheme to efficiently generate multi-qubit entangled states in a very flexible way. The method is based on a collective, dispersive qubit readout. By this measurement, a suitable product state of N qubits can be reliably converted into e.g. an N-qubit Greenberger-Horne-Zeilinger or W state. We propose and discuss the scheme and investigate the effects of decoherence and parameter spread as they would be encountered in experiment. Last but not least, we propose and fully analyze a scheme to dispersively detect single itinerant microwave photons. While experiments to generate single microwave photons have already been successfully performed, their single-shot quantum non-demolition detection has not been possible so far. The scheme presented in this thesis closes this gap in the circuit QED toolbox and reaches detection efficiencies of 30% only limited by fundamental quantum mechanics in this case the Quantum Zeno effect. This detection scheme could be used in quantum communication or quantum cryptography applications

    Quantum Simulation with Interacting Photons

    Get PDF
    Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities representing an effectively zero-dimensional volume, this line of research has shifted its focus towards engineering devices where such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of a network. Recent technological progress in several experimental platforms now opens the possibility to employ the systems of strongly interacting photons these give rise to as quantum simulators. Here we review the recent development and current status of this research direction for theory and experiment. Addressing both, optical photons interacting with atoms and microwave photons in networks of superconducting circuits, we focus on analogue quantum simulations in scenarios where effective photon-photon interactions exceed dissipative processes in the considered platforms.Comment: invited review for Journal of Optic

    Universal quantum computation in waveguide QED using decoherence free subspaces

    Get PDF
    The interaction of quantum emitters with one-dimensional photon-like reservoirs induces strong and long-range dissipative couplings that give rise to the emergence of the so-called decoherence free subspaces (DFSs) which are decoupled from dissipation. When introducing weak perturbations on the emitters, e.g., driving, the strong collective dissipation enforces an effective coherent evolution within the DFS. In this work, we show explicitly how by introducing single-site resolved drivings, we can use the effective dynamics within the DFS to design a universal set of one and two-qubit gates within the DFS of an ensemble of two-level atom-like systems. Using Liouvillian perturbation theory we calculate the scaling with the relevant figures of merit of the systems, such as the Purcell factor and imperfect control of the drivings. Finally, we compare our results with previous proposals using atomic Λ systems in leaky cavities

    Roadmap on STIRAP applications

    Get PDF
    STIRAP (stimulated Raman adiabatic passage) is a powerful laser-based method, usually involving two photons, for efficient and selective transfer of populations between quantum states. A particularly interesting feature is the fact that the coupling between the initial and the final quantum states is via an intermediate state, even though the lifetime of the latter can be much shorter than the interaction time with the laser radiation. Nevertheless, spontaneous emission from the intermediate state is prevented by quantum interference. Maintaining the coherence between the initial and final state throughout the transfer process is crucial. STIRAP was initially developed with applications in chemical dynamics in mind. That is why the original paper of 1990 was published in The Journal of Chemical Physics. However, from about the year 2000, the unique capabilities of STIRAP and its robustness with respect to small variations in some experimental parameters stimulated many researchers to apply the scheme to a variety of other fields of physics. The successes of these efforts are documented in this collection of articles. In Part A the experimental success of STIRAP in manipulating or controlling molecules, photons, ions or even quantum systems in a solid-state environment is documented. After a brief introduction to the basic physics of STIRAP, the central role of the method in the formation of ultracold molecules is discussed, followed by a presentation of how precision experiments (measurement of the upper limit of the electric dipole moment of the electron or detecting the consequences of parity violation in chiral molecules) or chemical dynamics studies at ultralow temperatures benefit from STIRAP. Next comes the STIRAP-based control of photons in cavities followed by a group of three contributions which highlight the potential of the STIRAP concept in classical physics by presenting data on the transfer of waves (photonic, magnonic and phononic) between respective waveguides. The works on ions or ion strings discuss options for applications, e.g. in quantum information. Finally, the success of STIRAP in the controlled manipulation of quantum states in solid-state systems, which are usually hostile towards coherent processes, is presented, dealing with data storage in rare-earth ion doped crystals and in nitrogen vacancy (NV) centers or even in superconducting quantum circuits. The works on ions and those involving solid-state systems emphasize the relevance of the results for quantum information protocols. Part B deals with theoretical work, including further concepts relevant to quantum information or invoking STIRAP for the manipulation of matter waves. The subsequent articles discuss the experiments underway to demonstrate the potential of STIRAP for populating otherwise inaccessible high-lying Rydberg states of molecules, or controlling and cooling the translational motion of particles in a molecular beam or the polarization of angular-momentum states. The series of articles concludes with a more speculative application of STIRAP in nuclear physics, which, if suitable radiation fields become available, could lead to spectacular results
    • …
    corecore