148 research outputs found

    A 5G Communication system based on flexible spectrum technology for the SKA

    Get PDF
    Faculty of Science Radio astronomy research is rapidly expanding across the African continent. At the same time, the fifth generation (5G) of mobile communication systems are also being researched and developed. Throughout history, mobile communication networks are known to affect the activities of radio astronomy. If not carefully managed, radio frequencies from mobile communication devices can severely affect radio astronomy observations. To that end, many techniques have been proposed to protect the radio astronomer from RFIs coming from radio communication networks. Some of the proposed techniques such as RFI quite zones and spectrum assignment by regulatory authorities will not be convenient during the implementation of 5G mobile networks. This is because 5G radio communication systems are expected to support spectrum-hungry application such as video-on-demand, augmented realities, high-definition television and so on. To realize this, the 5G networks will be forced to have access to protected radio spectrum, including those at which radio astronomy activities are being researched. To facilitate this, the 5G radio communication networks should have the intelligence to coexist within such protected spectrums without the consequences of radio frequency interferences (RFI) to the primary user. In this thesis, we present novel 5G networks with the intelligence that allow them to coexist within radio astronomy areas without introducing RFIs to the primary user. We proposed a photonic solution, keeping in mind the characteristic requirements for future 5G radio communication networks. The thesis begins by reviewing the current trend of radio astronomy research in Africa. It was found that radio astronomy research in Africa is growing rapidly. Many African countries such as South Africa and Ghana are at advanced stages when it comes to radio astronomy research. Therefore, the finding and proposal of this thesis will be valuable to such countries. In order to develop a radio access network (RAN) that can coexist within radio astronomy areas, the thesis reviewed past and present state-of-the-art RANs. Each access network was analyses for its feasibility to be implemented within radio astronomy areas to realize mobile communication without the consequences of RFIs to the astronomer. It was motivated that the current centralized radio access network (C-RAN) the best solution to be developed for radio communication within radio astronomy areas. This is because the C-RAN architecture is centralized by pooling network resources to a common point. From such pool, network resources can be controlled and shared among 5G network user, including radio astronomers and the surrounding communities. The next chapters reviewed photonic RF transmitters and their associated lasers currently being proposed to be used within C-RANs.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    A 5G Communication system based on flexible spectrum technology for the SKA

    Get PDF
    Faculty of Science Radio astronomy research is rapidly expanding across the African continent. At the same time, the fifth generation (5G) of mobile communication systems are also being researched and developed. Throughout history, mobile communication networks are known to affect the activities of radio astronomy. If not carefully managed, radio frequencies from mobile communication devices can severely affect radio astronomy observations. To that end, many techniques have been proposed to protect the radio astronomer from RFIs coming from radio communication networks. Some of the proposed techniques such as RFI quite zones and spectrum assignment by regulatory authorities will not be convenient during the implementation of 5G mobile networks. This is because 5G radio communication systems are expected to support spectrum-hungry application such as video-on-demand, augmented realities, high-definition television and so on. To realize this, the 5G networks will be forced to have access to protected radio spectrum, including those at which radio astronomy activities are being researched. To facilitate this, the 5G radio communication networks should have the intelligence to coexist within such protected spectrums without the consequences of radio frequency interferences (RFI) to the primary user. In this thesis, we present novel 5G networks with the intelligence that allow them to coexist within radio astronomy areas without introducing RFIs to the primary user. We proposed a photonic solution, keeping in mind the characteristic requirements for future 5G radio communication networks. The thesis begins by reviewing the current trend of radio astronomy research in Africa. It was found that radio astronomy research in Africa is growing rapidly. Many African countries such as South Africa and Ghana are at advanced stages when it comes to radio astronomy research. Therefore, the finding and proposal of this thesis will be valuable to such countries. In order to develop a radio access network (RAN) that can coexist within radio astronomy areas, the thesis reviewed past and present state-of-the-art RANs. Each access network was analyses for its feasibility to be implemented within radio astronomy areas to realize mobile communication without the consequences of RFIs to the astronomer. It was motivated that the current centralized radio access network (C-RAN) the best solution to be developed for radio communication within radio astronomy areas. This is because the C-RAN architecture is centralized by pooling network resources to a common point. From such pool, network resources can be controlled and shared among 5G network user, including radio astronomers and the surrounding communities. The next chapters reviewed photonic RF transmitters and their associated lasers currently being proposed to be used within C-RANs.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Mismatched Processing for Radar Interference Cancellation

    Get PDF
    Matched processing is a fundamental filtering operation within radar signal processing to estimate scattering in the radar scene based on the transmit signal. Although matched processing maximizes the signal-to-noise ratio (SNR), the filtering operation is ineffective when interference is captured in the receive measurement. Adaptive interference mitigation combined with matched processing has proven to mitigate interference and estimate the radar scene. A known caveat of matched processing is the resulting sidelobes that may mask other scatterers. The sidelobes can be efficiently addressed by windowing but this approach also comes with limited suppression capabilities, loss in resolution, and loss in SNR. The recent emergence of mismatch processing has shown to optimally reduce sidelobes while maintaining nominal resolution and signal estimation performance. Throughout this work, re-iterative minimum-mean square error (RMMSE) adaptive and least-squares (LS) optimal mismatch processing are proposed for enhanced signal estimation in unison with adaptive interference mitigation for various radar applications including random pulse repetition interval (PRI) staggering pulse-Doppler radar, airborne ground moving target indication, and radar & communication spectrum sharing. Mismatch processing and adaptive interference cancellation each can be computationally complex for practical implementation. Sub-optimal RMMSE and LS approaches are also introduced to address computational limitations. The efficacy of these algorithms is presented using various high-fidelity Monte Carlo simulations and open-air experimental datasets
    • …
    corecore