90 research outputs found

    Registration of histology and magnetic resonance imaging of the brain

    Get PDF
    Combining histology and non-invasive imaging has been attracting the attention of the medical imaging community for a long time, due to its potential to correlate macroscopic information with the underlying microscopic properties of tissues. Histology is an invasive procedure that disrupts the spatial arrangement of the tissue components but enables visualisation and characterisation at a cellular level. In contrast, macroscopic imaging allows non-invasive acquisition of volumetric information but does not provide any microscopic details. Through the establishment of spatial correspondences obtained via image registration, it is possible to compare micro- and macroscopic information and to recover the original histological arrangement in three dimensions. In this thesis, I present: (i) a survey of the literature relative to methods for histology reconstruction with and without the help of 3D medical imaging; (ii) a graph-theoretic method for histology volume reconstruction from sets of 2D sections, without external information; (iii) a method for multimodal 2D linear registration between histology and MRI based on partial matching of shape-informative boundaries

    Registration of serial sections: An evaluation method based on distortions of the ground truths

    Get PDF
    Registration of histological serial sections is a challenging task. Serial sections exhibit distortions and damage from sectioning. Missing information on how the tissue looked before cutting makes a realistic validation of 2D registrations extremely difficult. This work proposes methods for ground-truth-based evaluation of registrations. Firstly, we present a methodology to generate test data for registrations. We distort an innately registered image stack in the manner similar to the cutting distortion of serial sections. Test cases are generated from existing 3D data sets, thus the ground truth is known. Secondly, our test case generation premises evaluation of the registrations with known ground truths. Our methodology for such an evaluation technique distinguishes this work from other approaches. Both under- and over-registration become evident in our evaluations. We also survey existing validation efforts. We present a full-series evaluation across six different registration methods applied to our distorted 3D data sets of animal lungs. Our distorted and ground truth data sets are made publicly available.Comment: Supplemental data available under https://zenodo.org/record/428244

    Deformation equivariant cross-modality image synthesis with paired non-aligned training data

    Full text link
    Cross-modality image synthesis is an active research topic with multiple medical clinically relevant applications. Recently, methods allowing training with paired but misaligned data have started to emerge. However, no robust and well-performing methods applicable to a wide range of real world data sets exist. In this work, we propose a generic solution to the problem of cross-modality image synthesis with paired but non-aligned data by introducing new deformation equivariance encouraging loss functions. The method consists of joint training of an image synthesis network together with separate registration networks and allows adversarial training conditioned on the input even with misaligned data. The work lowers the bar for new clinical applications by allowing effortless training of cross-modality image synthesis networks for more difficult data sets

    Isoflächenrekonstruktion aus Serienschnitten

    Get PDF

    Spatial analysis of histology in 3D : quantification and visualization of organ and tumor level tissue environment

    Get PDF
    Histological changes in tissue are of primary importance in pathological research and diagnosis. Automated histological analysis requires ability to computationally separate pathological alterations from normal tissue. Conventional histopathological assessments are performed from individual tissue sections, leading to the loss of three-dimensional context of the tissue. Yet, the tissue context and spatial determinants are critical in several pathologies, such as in understanding growth patterns of cancer in its local environment. Here, we develop computational methods for visualization and quantitative assessment of histopathological alterations in three dimensions. First, we reconstruct the 3D representation of the whole organ from serial sectioned tissue. Then, we proceed to analyze the histological characteristics and regions of interest in 3D. As our example cases, we use whole slide images representing hematoxylin-eosin stained whole mouse prostates in a Pten+/- mouse prostate tumor model. We show that quantitative assessment of tumor sizes, shapes, and separation between spatial locations within the organ enable characterizing and grouping tumors. Further, we show that 3D visualization of tissue with computationally quantified features provides an intuitive way to observe tissue pathology. Our results underline the heterogeneity in composition and cellular organization within individual tumors. As an example, we show how prostate tumors have nuclear density gradients indicating areas of tumor growth directions and reflecting varying pressure from the surrounding tissue. The methods presented here are applicable to any tissue and different types of pathologies. This work provides a proof-of-principle for gaining a comprehensive view from histology by studying it quantitatively in 3D.publishedVersionPeer reviewe

    THE MOUSE BRAIN: A 3D ATLAS REGISTERING MRI, CT, AND HISTOLOGICAL SECTIONS IN THE THREE CARDINAL PLANES

    Get PDF
    Mouse brain atlases based on histology can be improved through the reconstruction of the 2D histological sections into a continuous 3D volume. Impediments to a continuous reconstruction include distortion caused by excision, fixation, and sectioning of the brain. In prior works, MR images have been used as a reference for global alignment of the sections and various methods have been implemented for local alignment. In this thesis, we offered an alternative method for local alignment and developed a method for registering orthogonal histological data sets into one coordinate system. As an end result we established a comprehensive mouse brain atlas with Nissl-stained histology images with 362 coronal, 162 horizontal, and 112 sagittal histological sections at 40 µm interval. For the global alignment, our MRI/CT population atlas was used to guide the alignment accuracy. The local alignment was performed using Large Deformation Diffeomorphic Metric Mapping (LDDMM) with a hierarchical approach to minimize structural discontinuity. Then the coordinate consistency was optimized by iteratively registering the three 3D volume data from the coronal, horizontal, and sagittal sections. The landmark-based analysis revealed the MRI-histology accuracy level was 0.1632 ± 0.1131 mm. This work established the coordinate link between the MRI/CT atlas and around 300 GB of histology data in the cellular-level anatomical information

    PET/MR imaging of hypoxic atherosclerotic plaque using 64Cu-ATSM

    Get PDF
    ABSTRACT OF THE DISSERTATION PET/MR Imaging of Hypoxic Atherosclerotic Plaque Using 64Cu-ATSM by Xingyu Nie Doctor of Philosophy in Biomedical Engineering Washington University in St. Louis, 2017 Professor Pamela K. Woodard, Chair Professor Suzanne Lapi, Co-Chair It is important to accurately identify the factors involved in the progression of atherosclerosis because advanced atherosclerotic lesions are prone to rupture, leading to disability or death. Hypoxic areas have been known to be present in human atherosclerotic lesions, and lesion progression is associated with the formation of lipid-loaded macrophages and increased local inflammation which are potential major factors in the formation of vulnerable plaque. This dissertation work represents a comprehensive investigation of non-invasive identification of hypoxic atherosclerotic plaque in animal models and human subjects using the PET hypoxia imaging agent 64Cu-ATSM. We first demonstrated the feasibility of 64Cu-ATSM for the identification of hypoxic atherosclerotic plaque and evaluated the relative effects of diet and genetics on hypoxia progression in atherosclerotic plaque in a genetically-altered mouse model. We then fully validated the feasibility of using 64Cu-ATSM to image the extent of hypoxia in a rabbit model with atherosclerotic-like plaque using a simultaneous PET-MR system. We also proceeded with a pilot clinical trial to determine whether 64Cu-ATSM MR/PET scanning is capable of detecting hypoxic carotid atherosclerosis in human subjects. In order to improve the 64Cu-ATSM PET image quality, we investigated the Siemens HD (high-definition) PET software and 4 partial volume correction methods to correct for partial volume effects. In addition, we incorporated the attenuation effect of the carotid surface coil into the MR attenuation correction _-map to correct for photon attention. In the long term, this imaging strategy has the potential to help identify patients at risk for cardiovascular events, guide therapy, and add to the understanding of plaque biology in human patients

    Serial sectioning block-face imaging of post-mortem human brain

    Full text link
    No current imaging technology can directly and without significant distortion visualize the defining microscopic features of the human brain. Ex vivo histological techniques yield exquisite planar images, but the cutting, mounting and staining they require induce slice-specific distortions, introducing cross-slice differences that prohibit true 3D analysis. Clearing techniques have proven difficult to apply to large blocks of human tissue and cause dramatic distortions as well. Thus, we have only a poor understanding of human brain structures that occur at a scale of 1–100 μm, in which neurons are organized into functional cohorts. To date, mesoscopic features which are critical components of this spatial context, have only been quantified in studies of 2D histologic images acquired in a small number of subjects and/or over a small region of the brain, typically in the coronal orientation, implying that features that are oblique or orthogonal to the coronal plane are difficult to properly analyze. A serial sectioning optical coherence tomography (OCT) imaging infrastructure will be developed and utilized to obtain images of cyto- and myelo-architectural features and microvasculature network of post-mortem human brain tissue. Our imaging infrastructure integrates vibratome with imaging head along with pre and post processing algorithms to construct volumetric OCT images of cubic centimeters of brain tissue blocks. Imaging is performed on tissue block-face prior to sectioning, which preserves the 3D information. Serial sections cut from the block can be subsequently treated with multiplexed histological staining of multiple molecular markers that will facilitate cellular classification or imaged with high-resolution transmission birefringence microscope. The successful completion of this imaging infrastructure enables the automated reconstruction of undistorted volume of human tissue brain blocks and permits studying the pathological alternations arising from diseases. Specifically, the mesoscopic and microscopic pathological alternations, as well as the optical properties and cortical morphological alternations of the dorsolateral prefrontal cortical region of two difference neurodegeneration diseases, Chronic Traumatic Encephalopathy (CTE) and Alzheimer’s Disease (AD), were evaluated using this imaging infrastructure
    corecore