48 research outputs found

    Robust and scalable domain decomposition solvers for unfitted finite element methods

    Get PDF
    Unfitted finite element methods, e.g., extended finite element techniques or the so-called finite cell method, have a great potential for large scale simulations, since they avoid the generation of body-fitted meshes and the use of graph partitioning techniques, two main bottlenecks for problems with non-trivial geometries. However, the linear systems that arise from these discretizations can be much more ill-conditioned, due to the so-called small cut cell problem. The state-of-the-art approach is to rely on sparse direct methods, which have quadratic complexity and are thus not well suited for large scale simulations. In order to solve this situation, in this work we investigate the use of domain decomposition preconditioners (balancing domain decomposition by constraints) for unfitted methods. We observe that a straightforward application of these preconditioners to the unfitted case has a very poor behavior. As a result, we propose a customization of the classical BDDC methods based on the stiffness weighting operator and an improved definition of the coarse degrees of freedom in the definition of the preconditioner. These changes lead to a robust and algorithmically scalable solver able to deal with unfitted grids. A complete set of complex 3D numerical experiments shows the good performance of the proposed preconditioners.Peer ReviewedPostprint (author's final draft

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Large-scale tree-based unfitted finite elements for metal additive manufacturing

    Get PDF
    This thesis addresses large-scale numerical simulations of partial differential equations posed on evolving geometries. Our target application is the simulation of metal additive manufacturing (or 3D printing) with powder-bed fusion methods, such as Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) or Electron-Beam Melting (EBM). The simulation of metal additive manufacturing processes is a remarkable computational challenge, because processes are characterised by multiple scales in space and time and multiple complex physics that occur in intricate three-dimensional growing-in-time geometries. Only the synergy of advanced numerical algorithms and high-performance scientific computing tools can fully resolve, in the short run, the simulation needs in the area. The main goal of this Thesis is to design a a novel highly-scalable numerical framework with multi-resolution capability in arbitrarily complex evolving geometries. To this end, the framework is built by combining three computational tools: (1) parallel mesh generation and adaptation with forest-of-trees meshes, (2) robust unfitted finite element methods and (3) parallel finite element modelling of the geometry evolution in time. Our numerical research is driven by several limitations and open questions in the state-of-the-art of the three aforementioned areas, which are vital to achieve our main objective. All our developments are deployed with high-end distributed-memory implementations in the large-scale open-source software project FEMPAR. In considering our target application, (4) temporal and spatial model reduction strategies for thermal finite element models are investigated. They are coupled to our new large-scale computational framework to simplify optimisation of the manufacturing process. The contributions of this Thesis span the four ingredients above. Current understanding of (1) is substantially improved with rigorous proofs of the computational benefits of the 2:1 k-balance (ease of parallel implementation and high-scalability) and the minimum requirements a parallel tree-based mesh must fulfil to yield correct parallel finite element solvers atop them. Concerning (2), a robust, optimal and scalable formulation of the aggregated unfitted finite element method is proposed on parallel tree-based meshes for elliptic problems with unfitted external contour or unfitted interfaces. To the author鈥檚 best knowledge, this marks the first time techniques (1) and (2) are brought together. After enhancing (1)+(2) with a novel parallel approach for (3), the resulting framework is able to mitigate a major performance bottleneck in large-scale simulations of metal additive manufacturing processes by powder-bed fusion: scalable adaptive (re)meshing in arbitrarily complex geometries that grow in time. Along the development of this Thesis, our application problem (4) is investigated in two joint collaborations with the Monash Centre for Additive Manufacturing and Monash University in Melbourne, Australia. The first contribution is an experimentally-supported thorough numerical assessment of time-lumping methods, the second one is a novel experimentally-validated formulation of a new physics-based thermal contact model, accounting for thermal inertia and suitable for model localisation, the so-called virtual domain approximation. By efficiently exploiting high-performance computing resources, our new computational framework enables large-scale finite element analysis of metal additive manufacturing processes, with increased fidelity of predictions and dramatical reductions of computing times. It can also be combined with the proposed model reductions for fast thermal optimisation of the manufacturing process. These tools open the path to accelerate the understanding of the process-to-performance link and digital product design and certification in metal additive manufacturing, two milestones that are vital to exploit the technology for mass-production.Aquesta tesi tracta la simulaci贸 a gran escala d'equacions en derivades parcials sobre geometries variables. L'aplicaci贸 principal 茅s la simulaci贸 de procesos de fabricaci贸 additiva (o impressi贸 3D) amb metalls i per m猫todes de fusi贸 de llit de pols, com ara Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) o Electron-Beam Melting (EBM). La simulaci贸 d'aquests processos 茅s un repte computacional excepcional, perqu猫 els processos estan caracteritzats per m煤ltiples escales espaitemporals i m煤ltiples f铆siques que tenen lloc sobre geometries tridimensionals complicades que creixen en el temps. La sin猫rgia entre algorismes num猫rics avan莽ats i eines de computaci贸 cient铆fica d'alt rendiment 茅s la 煤nica via per resoldre completament i a curt termini les necessitats en simulaci贸 d'aquesta 脿rea. El principal objectiu d'aquesta tesi 茅s dissenyar un nou marc num猫ric escalable de simulaci贸 amb capacitat de multiresoluci贸 en geometries complexes i variables. El nou marc es construeix unint tres eines computacionals: (1) mallat paral路lel i adaptatiu amb malles de boscs d'arbre, (2) m猫todes d'elements finits immersos robustos i (3) modelitzaci贸 en paral路lel amb elements finits de geometries que creixen en el temps. Algunes limitacions i problemes oberts en l'estat de l'art, que s贸n claus per aconseguir el nostre objectiu, guien la nostra recerca. Tots els desenvolupaments s'implementen en arquitectures de mem貌ria distribu茂da amb el programari d'acc茅s obert FEMPAR. Quant al problema d'aplicaci贸, (4) s'investiguen models redu茂ts en espai i temps per models t猫rmics del proc茅s. Aquests models redu茂ts s'acoplen al nostre marc computacional per simplificar l'optimitzaci贸 del proc茅s. Les contribucions d'aquesta tesi abasten els quatre punts de dalt. L'estat de l'art de (1) es millora substancialment amb proves riguroses dels beneficis computacionals del 2:1 balancejat (f脿cil paral路lelitzaci贸 i alta escalabilitat), aix铆 com dels requisits m铆nims que aquest tipus de mallat han de complir per garantir que els espais d'elements finits que s'hi defineixin estiguin ben posats. Quant a (2), s'ha formulat un m猫tode robust, 貌ptim i escalable per agregaci贸 per problemes el路l铆ptics amb contorn o interface immerses. Despr茅s d'augmentar (1)+(2) amb un nova estrat猫gia paral路lela per (3), el marc de simulaci贸 resultant mitiga de manera efectiva el principal coll d'ampolla en la simulaci贸 de processos de fabricaci贸 additiva en llits de pols de metall: adaptivitat i remallat escalable en geometries complexes que creixen en el temps. Durant el desenvolupament de la tesi, es col路labora amb el Monash Centre for Additive Manufacturing i la Universitat de Monash de Melbourne, Austr脿lia, per investigar el problema d'aplicaci贸. En primer lloc, es fa una an脿lisi experimental i num猫rica exhaustiva dels m猫todes d'aggregaci贸 temporal. En segon lloc, es proposa i valida experimental una nova formulaci贸 de contacte t猫rmic que t茅 en compte la in猫rcia t猫rmica i 茅s adequat per a localitzar el model, l'anomenada aproximaci贸 per dominis virtuals. Mitjan莽ant l'煤s eficient de recursos computacionals d'alt rendiment, el nostre nou marc computacional fa possible l'an脿lisi d'elements finits a gran escala dels processos de fabricaci贸 additiva amb metalls, amb augment de la fidelitat de les prediccions i reduccions significatives de temps de computaci贸. Aix铆 mateix, es pot combinar amb els models redu茂ts que es proposen per l'optimitzaci贸 t猫rmica del proc茅s de fabricaci贸. Aquestes eines contribueixen a accelerar la comprensi贸 del lligam proc茅s-rendiment i la digitalitzaci贸 del disseny i certificaci贸 de productes en fabricaci贸 additiva per metalls, dues fites crucials per explotar la tecnologia en producci贸 en massa.Postprint (published version

    A parallel solver for FSI problems with fictitious domain approach

    Full text link
    We present and analyze a parallel solver for the solution of fluid structure interaction problems described by a fictitious domain approach. In particular, the fluid is modeled by the non-stationary incompressible Navier-Stokes equations, while the solid evolution is represented by the elasticity equations. The parallel implementation is based on the PETSc library and the solver has been tested in terms of robustness with respect to mesh refinement and weak scalability by running simulations on a Linux cluster.Comment: Contribution to the 5th African Conference on Computational Mechanic
    corecore