73 research outputs found

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Blind Image Watermark Detection Algorithm based on Discrete Shearlet Transform Using Statistical Decision Theory

    Get PDF
    Blind watermarking targets the challenging recovery of the watermark when the host is not available during the detection stage.This paper proposes Discrete Shearlet Transform as a new embedding domain for blind image watermarking. Our novel DST blind watermark detection system uses a nonadditive scheme based on the statistical decision theory. It first computes the probability density function (PDF) of the DST coefficients modelled as a Laplacian distribution. The resulting likelihood ratio is compared with a decision threshold calculated using Neyman-Pearson criterion to minimise the missed detection subject to a fixed false alarm probability. Our method is evaluated in terms of imperceptibility, robustness and payload against different attacks (Gaussian noise, Blurring, Cropping, Compression and Rotation) using 30 standard grayscale images covering different characteristics (smooth, more complex with a lot of edges and high detail textured regions). The proposed method shows greater windowing flexibility with more sensitive to directional and anisotropic features when compared against Discrete Wavelet and Contourlets

    Adaptive Blind Watermarking Using Psychovisual Image Features

    Full text link
    With the growth of editing and sharing images through the internet, the importance of protecting the images' authorship has increased. Robust watermarking is a known approach to maintaining copyright protection. Robustness and imperceptibility are two factors that are tried to be maximized through watermarking. Usually, there is a trade-off between these two parameters. Increasing the robustness would lessen the imperceptibility of the watermarking. This paper proposes an adaptive method that determines the strength of the watermark embedding in different parts of the cover image regarding its texture and brightness. Adaptive embedding increases the robustness while preserving the quality of the watermarked image. Experimental results also show that the proposed method can effectively reconstruct the embedded payload in different kinds of common watermarking attacks. Our proposed method has shown good performance compared to a recent technique.Comment: 5 pages, 3 figure

    Color Image Watermarking Based on Radon Transform and Jordan Decomposition

    Get PDF
    Digital watermarking has been widely used for ownership identification and copyright protection. In this chapter, a color image watermarking method based on Radon transform (RT) and Jordan decomposition (JD) is proposed. Initially, the host color image is converted into L*a*b* color space. Then, the b* channel is selected and it is divided into 16 × 16 non-overlapping blocks. RT is applied to each of these blocks. JD is applied to the selected RT coefficients of each block represented in m × n matrix. Watermark data is embedded in the coefficients of the similarity transform matrix obtained from JD using a new quantization equation. Experimental results indicate that the proposed method is highly robust against various attacks such as noise addition, cropping, filtering, blurring, rotation, JPEG compression etc. In addition, it provides high quality watermarked images. Moreover, it shows superior performance than the state-of-the-art methods reported recently in terms of imperceptibility and robustness

    A Novel Watermarking Method using Hadamard Matrix Quantization

    Get PDF
    One of the most used watermarking algorithms is Singular Value Decomposition (SVD), which has a balanced level of imperceptibility and robustness. However, SVD uses a singular matrix for embedding and two orthogonal matrices for reconstruction, which is inefficient. In this paper, a Hadamard matrix is used to get a singular matrix for the reconstruction process. Moreover, SVD works with a floating-point value, which takes long processing time, while the Hadamard matrix works with an integer range, which is more efficient. Visual measurement showed that SVD and the new method had average NC values of 0.8321 and 0.8293, whereas the average SSIM values resulted in the same value (0.9925). In terms of processing time, the proposed method ran faster than SVD with an embedding and extraction time of 0.6308 and 0.2163 seconds against 0.8419 and 0.2935 seconds. The proposed method successfully reduced the running time while maintaining imperceptibility and robustness

    Research on Digital Watermarking Algorithm for Anti-geometric Attack

    Get PDF
    For the problem that the traditional digital watermarking algorithm is less robustness against geometric attacks, this paper introduces the related content of digital watermarking technology, which combs digital watermarking technology, digital watermarking attack technology and digital watermarking evaluation method, and summarizes the improved algorithms proposed in recent years. Next, the traditional wavelet transform algorithm and the improved algorithm based on DCT transform are selected for comparison experiments. The latter combines Arnold scrambling and SVD decomposition, which has better shear resistance. Finally, combined with the research status, the future research focus of digital watermarking algorithm is prospected
    corecore