540 research outputs found

    Semisupervised hypergraph discriminant learning for dimensionality reduction of hyperspectral image.

    Get PDF
    Semisupervised learning is an effective technique to represent the intrinsic features of a hyperspectral image (HSI), which can reduce the cost to obtain the labeled information of samples. However, traditional semisupervised learning methods fail to consider multiple properties of an HSI, which has restricted the discriminant performance of feature representation. In this article, we introduce the hypergraph into semisupervised learning to reveal the complex multistructures of an HSI, and construct a semisupervised discriminant hypergraph learning (SSDHL) method by designing an intraclass hypergraph and an interclass graph with the labeled samples. SSDHL constructs an unsupervised hypergraph with the unlabeled samples. In addition, a total scatter matrix is used to measure the distribution of the labeled and unlabeled samples. Then, a low-dimensional projection function is constructed to compact the properties of the intraclass hypergraph and the unsupervised hypergraph, and simultaneously separate the characteristics of the interclass graph and the total scatter matrix. Finally, according to the objective function, we can obtain the projection matrix and the low-dimensional features. Experiments on three HSI data sets (Botswana, KSC, and PaviaU) show that the proposed method can achieve better classification results compared with a few state-of-the-art methods. The result indicates that SSDHL can simultaneously utilize the labeled and unlabeled samples to represent the homogeneous properties and restrain the heterogeneous characteristics of an HSI

    Scalable computing for earth observation - Application on Sea Ice analysis

    Get PDF
    In recent years, Deep learning (DL) networks have shown considerable improvements and have become a preferred methodology in many different applications. These networks have outperformed other classical techniques, particularly in large data settings. In earth observation from the satellite field, for example, DL algorithms have demonstrated the ability to learn complicated nonlinear relationships in input data accurately. Thus, it contributed to advancement in this field. However, the training process of these networks has heavy computational overheads. The reason is two-fold: The sizable complexity of these networks and the high number of training samples needed to learn all parameters comprising these architectures. Although the quantity of training data enhances the accuracy of the trained models in general, the computational cost may restrict the amount of analysis that can be done. This issue is particularly critical in satellite remote sensing, where a myriad of satellites generate an enormous amount of data daily, and acquiring in-situ ground truth for building a large training dataset is a fundamental prerequisite. This dissertation considers various aspects of deep learning based sea ice monitoring from SAR data. In this application, labeling data is very costly and time-consuming. Also, in some cases, it is not even achievable due to challenges in establishing the required domain knowledge, specifically when it comes to monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the application domain of this thesis. Because the Arctic is remote, has long dark seasons, and has a very dynamic weather system, the collection of reliable in-situ data is very demanding. In addition to the challenges of interpreting SAR data of sea ice, this issue makes SAR-based sea ice analysis with DL networks a complicated process. We propose novel DL methods to cope with the problems of scarce training data and address the computational cost of the training process. We analyze DL network capabilities based on self-designed architectures and learn strategies, such as transfer learning for sea ice classification. We also address the scarcity of training data by proposing a novel deep semi-supervised learning method based on SAR data for incorporating unlabeled data information into the training process. Finally, a new distributed DL method that can be used in a semi-supervised manner is proposed to address the computational complexity of deep neural network training

    Deep Semisupervised Teacher-Student Model Based on Label Propagation for Sea Ice Classification

    Get PDF
    In this article, we propose a novelteacher–student-based label propagation deep semisupervised learning (TSLP-SSL) method for sea ice classification based on Sentinel-1 synthetic aperture radar data. For sea ice classification, labeling the data precisely is very time consuming and requires expert knowledge. Our method efficiently learns sea ice characteristics from a limited number of labeled samples and a relatively large number of unlabeled samples. Therefore, our method addresses the key challenge of using a limited number of precisely labeled samples to achieve generalization capability by discovering the underlying sea ice characteristics also from unlabeled data. We perform experimental analysis considering a standard dataset consisting of properly labeled sea ice data spanning over different time slots of the year. Both qualitative and quantitative results obtained on this dataset show that our proposed TSLP-SSL method outperforms deep supervised and semisupervised reference methods

    Semi-Supervised Fine-Tuning for Deep Learning Models in Remote Sensing Applications

    Full text link
    A combinatory approach of two well-known fields: deep learning and semi supervised learning is presented, to tackle the land cover identification problem. The proposed methodology demonstrates the impact on the performance of deep learning models, when SSL approaches are used as performance functions during training. Obtained results, at pixel level segmentation tasks over orthoimages, suggest that SSL enhanced loss functions can be beneficial in models' performance
    • …
    corecore