1,345 research outputs found

    Robust and Scalable Geographic Multicast Protocol for Mobile Ad-hoc Networks

    Full text link
    Abstract — Group communications are important in Mobile Ad hoc Networks (MANET). Multicast is an efficient method to implement the group communications. However, it is challenging to implement scalable, robust and efficient multicast in MANET due to the difficulty in group membership management, multicast packet forwarding and the maintenance of a tree- or mesh-based multicast structure over the dynamic topology for a large group size or network size. We propose a novel Robust and Scalable Geographic Multicast Protocol (RSGM). Scalable and efficient group membership management has been performed through zone-based structure, and the location service for group members is combined with membership management. Both the control messages and data packets are forwarded along efficient tree-shape paths, but there is no need to actively maintain a tree struc-ture, which efficiently reduces the maintenance overhead and makes the transmissions more robust to dynamics. Geographic forwarding is used to achieve further scalability and robustness. To avoid periodic flooding-based sources ’ announcements, an efficient source tracking mechanism is designed. Furthermore, we handle the empty zone problem faced by most zone-based routing protocols. Our simulation studies show that RSGM can scale to large group size and large network size, and a high delivery ratio is achieved by RSGM even under high dynamics. I

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    A Hierarchical Approach to Position-Based Multicast for Mobile Ad-hoc Networks

    Full text link
    In this paper we present Scalable Position-Based Multicast (SPBM), a multicast routing protocol for ad-hoc networks. SPBM uses the geographic position of nodes to provide a highly scalable group membership scheme and to forward data packets in a way that is very robust to changes in the topology of the network. SPBM bases the forwarding decision on whether there are group members located in a given direction or not, allowing for a hierarchical aggregation of membership information: the further away a region is from an intermediate node the higher the level of aggregation should be for this region. Because of aggregation, the overhead for group membership management scales logarithmically with the number of nodes and is independent of the number of multicast senders for a given multicast group. Furthermore, we show that group management overhead is bounded by a constant if the frequency of membership updates is scaled down with the aggregation level. This scaling of the update frequency is reasonable since the higher the level of aggregation the lower the number of membership changes for the aggregate. The performance of SPBM is investigated by means of simulation, including a comparison with ODMRP, and through mathematical analysis. We also describe an open source kernel implementation of SPBM that has been successfully deployed on hand-held computers

    Scalable position-based multicast for mobile ad-hoc networks

    Get PDF
    In this paper we present Scalable Position-Based Multicast (SPBM), a multicast routing protocol for ad-hoc networks. SPBM uses the geographic position of nodes to provide a highly scalable group membership scheme and to forward data packets with a very low overhead. SPBM bases its multicast forwarding decision on whether there are group members located in a given direction or not, allowing for a hierarchical aggregation of group members contained in geographic regions: the larger the distance between a region containing group members and an intermediate node, the larger can this region be without having a significant impact on the accuracy of the direction from the intermediate node to that region. Because of aggregation, the overhead for group membership management is bounded by a small constant while it is independent of the number of multicast senders for a given multicast group. We investigate the performance of SPBM by means of simulation, including a comparison with ODMRP

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Position-Based Multicast Routing for Mobile Ad-Hoc Networks

    Full text link
    In this paper we present Position-Based Multicast (PBM), a multicast routing algorithm for mobile ad-hoc networks which does neither require the maintenance of a distribution structure (e.g., a tree or a mesh) nor resorts to flooding of data packets. Instead a forwarding node uses information about the positions of the destinations and its own neighbors to determine the next hops that the packet should be forwarded to and is thus very well suited for highly dynamic networks. PBM is a generalization of existing position-based unicast routing protocols such as face-2 or GPSR. The key contributions of PBM are rules for the splitting of multicast packets and a repair strategy for situations where there exists no direct neighbor that makes progress toward one or more destinations. The characteristics of PBM are evaluated in detail by means of simulation
    • …
    corecore