1,295 research outputs found

    Space robotics: Recent accomplishments and opportunities for future research

    Get PDF
    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Intelligent Escape of Robotic Systems: A Survey of Methodologies, Applications, and Challenges

    Full text link
    Intelligent escape is an interdisciplinary field that employs artificial intelligence (AI) techniques to enable robots with the capacity to intelligently react to potential dangers in dynamic, intricate, and unpredictable scenarios. As the emphasis on safety becomes increasingly paramount and advancements in robotic technologies continue to advance, a wide range of intelligent escape methodologies has been developed in recent years. This paper presents a comprehensive survey of state-of-the-art research work on intelligent escape of robotic systems. Four main methods of intelligent escape are reviewed, including planning-based methodologies, partitioning-based methodologies, learning-based methodologies, and bio-inspired methodologies. The strengths and limitations of existing methods are summarized. In addition, potential applications of intelligent escape are discussed in various domains, such as search and rescue, evacuation, military security, and healthcare. In an effort to develop new approaches to intelligent escape, this survey identifies current research challenges and provides insights into future research trends in intelligent escape.Comment: This paper is accepted by Journal of Intelligent and Robotic System

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    미지 환경에서의 안전 비행 운송을 위한 협업제어 및 경로생성 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 공과대학 기계항공공학부, 2017. 8. 김현진.Recently, aerial manipulators using unmanned aerial vehicles (UAVs) are receiving attention due to their superior mobility in three-dimensional space. It can be applied to a wide range of applications such as inspection of hard-to-reach structure or aerial transportation. This dissertation presents a viable approach to safe aerial transportation in unknown environments by using multiple aerial manipulators. Unlike existing approaches for cooperative manipulation based on force decomposition or impedance-based control that often requ- ire heavy or expensive force/torque sensors, this dissertation suggests a method without such sensors, by exploiting the decoupled dynamics to develop estimation and control alg- orithms. With the decoupled dynamics and the assumption of rigid grasp, an online estimator is designed initially to estimate the mass and inertial properties of an unknown payload using the states of the aerial manipulator only. Stable adaptive controller based on the online estimated parameter is then designed using Lyapunov methods. Through simulations, the performance of the proposed controller is compared with conventional passivity-based adaptive algorithms. This dissertation also proposes a motion generation algorithm for cooperative manipulators to transport a payload safely. If the payload is excessively heavy in comparison with the transportation ability of an aerial robot, an aerial robot may crash because of actuation limits on the motors. As a first step, the allowable flight envelope is analyzed with respect to the position of the end-effector. In order to keep the end-effector in the allowable fight region, kinematic coordination between a payload and cooperative aerial manipulators is first studied. A two-layer framework, in which the first layer computes the motion reference of the end-effectors and the second layer calculates the joint motion of the corresponding manipulator, is then developed in a task-prioritized fashion. When generating aerial manipulator trajectories, the desired trajectory is calculated to satisfy the unilateral constraints obtained by the allowable flight envelope. This work also considers the obstacle avoidance of cooperative aerial manipulators in unknown environments. Using the relative distance between an aerial robot and an obstacle as measured by an RGB-D camera and point cloud library (PCL), dynamic movement primitives (DMPs) modify the desired trajectory. By having the leader robot detect an obstacle and the follower robots maintain a given relative distance with the leader, improved efficiency of obstacle avoidance for cooperative robots can be achieved. Finally, the proposed synthesis of estimation, control, and planning algorithms are validated with experiments using custom-made aerial manipulators combined with a two-DOF (Degree Of Freedom) robotic arm. The proposed method is validated with trajectory tracking using two types of payloads. Cooperative aerial transportation in unknown environments is also performed with an unknown obstacle. Both experimental results suggest that the proposed approach can be utilized for safe cooperative aerial transportation.1 Introduction 1 1.1 Background and Motivations 1 1.2 Literature Survey 4 1.2.1 Cooperative Manipulation 4 1.2.2 Handling an Unknown Object 7 1.2.3 Obstacle Avoidance for Cooperative Robots 8 1.3 Research Objectives and Contributions 9 1.3.1 Estimation and Control Algorithm 10 1.3.2 Motion Planning within the Allowable Flight Envelope 11 1.3.3 Real-time Obstacle Avoidance using an RGB-D Camera 11 1.4 Thesis Organization 12 2 Background 14 2.1 Dynamics for Cooperative Aerial Manipulator 14 2.1.1 Rigid Body Statics 15 2.1.2 Dynamics for Single Aerial Manipulator 16 2.1.3 Decoupled Dynamics 19 2.2 Task Priority 22 2.3 DMPs 24 3 Estimator and Controller Design 26 3.1 Payload Mass and Inertia Parameter Estimation 28 3.1.1 System Parametrization 28 3.1.2 On-line Parameter Estimator 29 3.1.3 Robust Analysis for Measurement Noise 32 3.2 Controller Design 34 3.3 Simulation Results 40 4 Path Planning 45 4.1 Allowable Payload for Each Aerial Manipulator 45 4.2 Trajectory Generation with Unilateral Constraints 49 4.2.1 End-eector Trajectory Generation 49 4.2.2 Inverse Kinematics with Null Space Approach 49 4.2.3 Task Prioritization with Unilateral Constraints 56 5 Obstacle Avoidance in Unknown Environments 60 5.1 Obstacle Detection 60 5.2 Movement Primitives for Cooperative Aerial Manipulators 64 6 Experimental Validation and Results 71 6.1 Simulation Validation for Moving Obstacle 71 6.2 Experimental Setup 74 6.3 Experiment for Cooperative Aerial Transportation 77 6.3.1 Path Following with Two Types of Payloads 77 6.3.2 Aerial Transportations in Unknown Environments 78 7 Conclusions 93 Abstract (in Korean) 105Docto

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    The Development of a Multi-arm Mobile Robot System for Nuclear Decommissioning Applications.

    Get PDF
    This PhD thesis is based in the field of robotics and introduces a case study of the design and development of a multi-arm mobile robot system for nuclear decommissioning (MARS-ND). A key premise underlying the research was to develop intelligence in the robot that is similar to the cooperation and communication between the human brain and its two arms; hence the human body was adopted as the starting point to establish the size and functionality of the proposed system. The approach adopted for this research demonstrates the development, integration and configuration of a multi-arm robot system which consists of two human armlike off-the-shelf manipulators whose joints are controlled using potentiometer sensors and hydraulic actuators. Using the manipulators' sensor feedback, a wide variety of complex tasks found in the rapidly expanding field of nuclear decommissioning can be undertaken. The thesis also considers the issue of collaboration, collision detection and collision avoidance between the two arms of MARS-ND. As part of the final stage of this research the author participated in a collaborative research project with the Sugano Laboratory at Waseda University, Tokyo, Japan. The three major research issues addressed in this thesis are: 1. The selection and integration of off-the-shelf hardware in the development of MARS-ND using the latest technology available for robotic systems 2. The creation of a suitable control system for the robot arms; and the building of an advanced, user-friendly interface between the robot system and the host computer 3. The investigation and implementation of collaboration, coordinated motion control and collision detection & avoidance techniques for the robot arms The hardware and software integration for the whole robotic system is explained with the proposed software architecture and the use of National Instruments (NI) functions and tools to control the movement of the arm joints and the performance of a selected decommissioning task. This thesis also examines the operational software applied within the research through its discussion of four interlinked areas: 1. The control software and hardware interface for the MARS-ND and the controller architecture 2. The application of an NI Compact FieldPoint controller and FieldPoint I/O modules to facilitate wireless communication between the Multi-Arm Mobile Robot system and the user interface in the host PC 3. The use of Measurement and Automation Explorer (MAX) and LabVIEW software tools for calibration and the building of user interfaces required for sending and receiving the signals needed to control the robot arm joints accurately 4. The application of a PID toolkit in LabVIEW for the design of a simple PID controller for the individual arm joints with a potentiometer sensor fitted inside each joint in order to provide a feedback signal to the controller The thesis concludes that MARS-ND is a good example of a robotic system specifically designed for hazardous nuclear decommissioning applications. It demonstrates the complexity of such a system from a number of aspects such as the need for mobility, control, sensor and system design, and integration using modem tools that are available off-the-shelf. In addition the use of these modern tools allows a single mechatronics engineer to design, integrate, interface and build a motion control system for MARS-ND as compared to the traditional way of building a similar robot by a team of specialised engineers. The contribution this research makes to the design and building of multi-arm robot system for nuclear decommissioning industry concerns its size and mobility using a mobile platform to transport the multi-arm robot system. In addition links have been made between Lancaster University and Waseda University in the context of the development of multi-arm robot systems
    corecore