15 research outputs found

    Conductive Yarn Embroidered Circuits for System on Textiles

    Get PDF
    With the recent convergence of electronics and textile technology, various kinds of smart wearables are being developed, such as heating clothes, health monitoring clothes, and motion sensing clothes. In this study, the novel conductive embroidery yarns for touch sensing and signal transmission for system on textile (SoT) are introduced. The conductive yarn for touch sensing can be used as a user interface of smart clothes by constructing an embroidery circuit. The conductive yarn for signal transmission can be embroidered on smart clothing and used as a transmission line to transmit power and signal. The conductive yarns and their embroidered circuits were characterized and SoT prototypes using the embroidered circuit of these conductive yarns were presented. These e-textiles based on touch sensing and signal transmission can be comfortably applied for SoT and maintain electrical performance without being damaged by tensile force generated by the movement of the wearer

    A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology

    Full text link
    [EN] Among many of the designs used in the detection of 2D gestures for portable technology, the touchpad is one of the most complex and with more functions to implement. Its development has undergone a great push due to its use in displays, but it is not widely used with other technologies. Its application on textiles could allow a wide range of applications in the field of medicine, sports, etc. Obtaining a flexible, robust touchpad with good response and low cost is one of the objectives of this work. A textile touchpad based on a diamond pattern design using screen printing technology has been developed. This technology is widely used in the textile industry and therefore does not require heavy investments. The developed prototypes were analyzed using a particular controller for projected capacitive technologies (pro-cap), which is the most used in gesture detection. Two different designs were used to obtain the best configuration, obtaining a good result in both cases.This work was supported by Spanish Government/FEDER funds (grant number MAT2015-64139-C4-3-R (Mineco/Feder)). The work presented is also funded by the Conselleria d'Economia Sostenible, Sectors Productius i Treball, through IVACE (Instituto Valenciano de Competitividad Empresarial) and co-funded by ERDF funding from the EU. Application No. IMAMCI/2017/1.Ferri Pascual, J.; Lidon-Roger, JV.; Moreno Canton, J.; Martinez, G.; Garcia-Breijo, E. (2017). A Wearable Textile 2D Touchpad Sensor Based on Screen-Printing Technology. Materials. 10(12):1-16. https://doi.org/10.3390/ma10121450S1161012Takamatsu, S., Lonjaret, T., Ismailova, E., Masuda, A., Itoh, T., & Malliaras, G. G. (2015). Wearable Keyboard Using Conducting Polymer Electrodes on Textiles. Advanced Materials, 28(22), 4485-4488. doi:10.1002/adma.201504249McMillan, D., Brown, B., Lampinen, A., McGregor, M., Hoggan, E., & Pizza, S. (2017). Situating Wearables. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. doi:10.1145/3025453.3025993Nirjon, S., Gummeson, J., Gelb, D., & Kim, K.-H. (2015). TypingRing. Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services - MobiSys ’15. doi:10.1145/2742647.2742665Rekimoto, J. (s. f.). GestureWrist and GesturePad: unobtrusive wearable interaction devices. Proceedings Fifth International Symposium on Wearable Computers. doi:10.1109/iswc.2001.962092Kim, K., Joo, D., & Lee, K.-P. (2010). Wearable-object-based interaction for a mobile audio device. Proceedings of the 28th of the international conference extended abstracts on Human factors in computing systems - CHI EA ’10. doi:10.1145/1753846.1754070Yoon, S. H., Huo, K., & Ramani, K. (2016). Wearable textile input device with multimodal sensing for eyes-free mobile interaction during daily activities. Pervasive and Mobile Computing, 33, 17-31. doi:10.1016/j.pmcj.2016.04.008Van Heek, J., Schaar, A. K., Trevisan, B., Bosowski, P., & Ziefle, M. (2014). User requirements for wearable smart textiles. Does the usage context matter (medical vs. sports)? Proceedings of the 8th International Conference on Pervasive Computing Technologies for Healthcare. doi:10.4108/icst.pervasivehealth.2014.255179Rogers, J. A., Someya, T., & Huang, Y. (2010). Materials and Mechanics for Stretchable Electronics. Science, 327(5973), 1603-1607. doi:10.1126/science.1182383Fan, J. A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., … Rogers, J. A. (2014). Fractal design concepts for stretchable electronics. Nature Communications, 5(1). doi:10.1038/ncomms4266Bhalla, M. R., & Bhalla, A. V. (2010). Comparative Study of Various Touchscreen Technologies. International Journal of Computer Applications, 6(8), 12-18. doi:10.5120/1097-1433Walker, G. (2012). A review of technologies for sensing contact location on the surface of a display. Journal of the Society for Information Display, 20(8), 413-440. doi:10.1002/jsid.100Pedersen, H. C., Jakobsen, M. L., Hanson, S. G., Mosgaard, M., Iversen, T., & Korsgaard, J. (2011). Optical touch screen based on waveguide sensing. Applied Physics Letters, 99(6), 061102. doi:10.1063/1.3615656Emamian, S., Avuthu, S. G. R., Narakathu, B. B., Eshkeiti, A., Chlaihawi, A. A., Bazuin, B. J., … Atashbar, M. Z. (2015). Fully printed and flexible piezoelectric based touch sensitive skin. 2015 IEEE SENSORS. doi:10.1109/icsens.2015.7370651George, B., Zangl, H., Bretterklieber, T., & Brasseur, G. (2010). A Combined Inductive–Capacitive Proximity Sensor for Seat Occupancy Detection. IEEE Transactions on Instrumentation and Measurement, 59(5), 1463-1470. doi:10.1109/tim.2010.2040910Gunnarsson, E., Karlsteen, M., Berglin, L., & Stray, J. (2014). A novel technique for direct measurements of contact resistance between interlaced conductive yarns in a plain weave. Textile Research Journal, 85(5), 499-511. doi:10.1177/0040517514532158Enokibori, Y., Suzuki, A., Mizuno, H., Shimakami, Y., & Mase, K. (2013). E-textile pressure sensor based on conductive fiber and its structure. Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct publication - UbiComp ’13 Adjunct. doi:10.1145/2494091.2494158Wei, Y., Torah, R., Li, Y., & Tudor, J. (2016). Dispenser printed capacitive proximity sensor on fabric for applications in the creative industries. Sensors and Actuators A: Physical, 247, 239-246. doi:10.1016/j.sna.2016.06.005Gorgutsa, S., Gu, J. F., & Skorobogatiy, M. (2011). A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers. Smart Materials and Structures, 21(1), 015010. doi:10.1088/0964-1726/21/1/015010Hamdan, N. A., Heller, F., Wacharamanotham, C., Thar, J., & Borchers, J. (2016). Grabrics. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems - CHI EA ’16. doi:10.1145/2851581.2892529Kim, D.-K. (2010). A Touchpad for Force and Location Sensing. ETRI Journal, 32(5), 722-728. doi:10.4218/etrij.10.1510.007

    New generation of interactive platforms based on novel printed smart materials

    Get PDF
    Programa doutoral em Engenharia Eletrónica e de Computadores (área de Instrumentação e Microssistemas Eletrónicos)The last decade was marked by the computer-paradigm changing with other digital devices suddenly becoming available to the general public, such as tablets and smartphones. A shift in perspective from computer to materials as the centerpiece of digital interaction is leading to a diversification of interaction contexts, objects and applications, recurring to intuitive commands and dynamic content that can proportionate more interesting and satisfying experiences. In parallel, polymer-based sensors and actuators, and their integration in different substrates or devices is an area of increasing scientific and technological interest, which current state of the art starts to permit the use of smart sensors and actuators embodied within the objects seamlessly. Electronics is no longer a rigid board with plenty of chips. New technological advances and perspectives now turned into printed electronics in polymers, textiles or paper. We are assisting to the actual scaling down of computational power into everyday use objects, a fusion of the computer with the material. Interactivity is being transposed to objects erstwhile inanimate. In this work, strain and deformation sensors and actuators were developed recurring to functional polymer composites with metallic and carbonaceous nanoparticles (NPs) inks, leading to capacitive, piezoresistive and piezoelectric effects, envisioning the creation of tangible user interfaces (TUIs). Based on smart polymer substrates such as polyvinylidene fluoride (PVDF) or polyethylene terephthalate (PET), among others, prototypes were prepared using piezoelectric and dielectric technologies. Piezoresistive prototypes were prepared with resistive inks and restive functional polymers. Materials were printed by screen printing, inkjet printing and doctor blade coating. Finally, a case study of the integration of the different materials and technologies developed is presented in a book-form factor.A última década foi marcada por uma alteração do paradigma de computador pelo súbito aparecimento dos tablets e smartphones para o público geral. A alteração de perspetiva do computador para os materiais como parte central de interação digital levou a uma diversificação dos contextos de interação, objetos e aplicações, recorrendo a comandos intuitivos e conteúdos dinâmicos capazes de tornarem a experiência mais interessante e satisfatória. Em simultâneo, sensores e atuadores de base polimérica, e a sua integração em diferentes substratos ou dispositivos é uma área de crescente interesse científico e tecnológico, e o atual estado da arte começa a permitir o uso de sensores e atuadores inteligentes perfeitamente integrados nos objetos. Eletrónica já não é sinónimo de placas rígidas cheias de componentes. Novas perspetivas e avanços tecnológicos transformaram-se em eletrónica impressa em polímeros, têxteis ou papel. Neste momento estamos a assistir à redução da computação a objetos do dia a dia, uma fusão do computador com a matéria. A interatividade está a ser transposta para objetos outrora inanimados. Neste trabalho foram desenvolvidos atuadores e sensores e de pressão e de deformação com recurso a compostos poliméricos funcionais com tintas com nanopartículas (NPs) metálicas ou de base carbónica, recorrendo aos efeitos capacitivo, piezoresistivo e piezoelétrico, com vista à criação de interfaces de usuário tangíveis (TUIs). Usando substratos poliméricos inteligentes tais como fluoreto de polivinilideno (PVDF) ou politereftalato de etileno (PET), entre outos, foi possível a preparação de protótipos de tecnologia piezoelétrica ou dielétrica. Os protótipos de tecnologia piezoresistiva foram feitos com tintas resistivas e polímeros funcionais resistivos. Os materiais foram impressos por serigrafia, jato de tinta, impressão por aerossol e revestimento de lâmina doctor blade. Para terminar, é apresentado um caso de estudo da integração dos diferentes materiais e tecnologias desenvolvidos sob o formato de um livro.This project was supported by FCT – Fundação para a Ciência e a Tecnologia, within the doctorate grant with reference SFRH/BD/110622/2015, by POCH – Programa Operacional Capital Humano, and by EU – European Union

    Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition

    Full text link
    Tesis por compendio[EN] The main objective of this thesis is the development of new sensors and actuators using Printed Electronics technology. For this, conductive, semiconductor and dielectric polymeric materials are used on flexible and/or elastic substrates. By means of suitable designs and application processes, it is possible to manufacture sensors capable of interacting with the environment. In this way, specific sensing functionalities can be incorporated into the substrates, such as textile fabrics. Additionally, it is necessary to include electronic systems capable of processing the data obtained, as well as its registration. In the development of these sensors and actuators, the physical properties of the different materials are precisely combined. For this, multilayer structures are designed where the properties of some materials interact with those of others. The result is a sensor capable of capturing physical variations of the environment, and convert them into signals that can be processed, and finally transformed into data. On the one hand, a tactile sensor printed on textile substrate for 2D gesture recognition was developed. This sensor consists of a matrix composed of small capacitive sensors based on a capacitor type structure. These sensors were designed in such a way that, if a finger or other object with capacitive properties, gets close enough, its behaviour varies, and it can be measured. The small sensors are arranged in this matrix as in a grid. Each sensor has a position that is determined by a row and a column. The capacity of each small sensor is periodically measured in order to assess whether significant variations have been produced. For this, it is necessary to convert the sensor capacity into a value that is subsequently digitally processed. On the other hand, to improve the effectiveness in the use of the developed 2D touch sensors, the way of incorporating an actuator system was studied. Thereby, the user receives feedback that the order or action was recognized. To achieve this, the capacitive sensor grid was complemented with an electroluminescent screen printed as well. The final prototype offers a solution that combines a 2D tactile sensor with an electroluminescent actuator on a printed textile substrate. Next, the development of a 3D gesture sensor was carried out using a combination of sensors also printed on textile substrate. In this type of 3D sensor, a signal is sent generating an electric field on the sensors. This is done using a transmission electrode located very close to them. The generated field is received by the reception sensors and converted to electrical signals. For this, the sensors are based on electrodes that act as receivers. If a person places their hands within the emission area, a disturbance of the electric field lines is created. This is due to the deviation of the lines to ground using the intrinsic conductivity of the human body. This disturbance affects the signals received by the electrodes. Variations captured by all electrodes are processed together and can determine the position and movement of the hand on the sensor surface. Finally, the development of an improved 3D gesture sensor was carried out. As in the previous development, the sensor allows contactless gesture detection, but increasing the detection range. In addition to printed electronic technology, two other textile manufacturing technologies were evaluated.[ES] La presente tesis doctoral tiene como objetivo fundamental el desarrollo de nuevos sensores y actuadores empleando la tecnología electrónica impresa, también conocida como Printed Electronics. Para ello, se emplean materiales poliméricos conductores, semiconductores y dieléctricos sobre sustratos flexibles y/o elásticos. Por medio de diseños y procesos de aplicación adecuados, es posible fabricar sensores capaces de interactuar con el entorno. De este modo, se pueden incorporar a los sustratos, como puedan ser tejidos textiles, funcionalidades específicas de medición del entorno y de respuesta ante cambios de este. Adicionalmente, es necesario incluir sistemas electrónicos, capaces de realizar el procesado de los datos obtenidos, así como de su registro. En el desarrollo de estos sensores y actuadores se combinan las propiedades físicas de los diferentes materiales de forma precisa. Para ello, se diseñan estructuras multicapa donde las propiedades de unos materiales interaccionan con las de los demás. El resultado es un sensor capaz de captar variaciones físicas del entorno, y convertirlas en señales que pueden ser procesadas y transformadas finalmente en datos. Por una parte, se ha desarrollado un sensor táctil impreso sobre sustrato textil para reconocimiento de gestos en 2D. Este sensor se compone de una matriz formada por pequeños sensores capacitivos basados en estructura de tipo condensador. Estos se han diseñado de forma que, si un dedo u otro objeto con propiedades capacitivas se aproxima suficientemente, su comportamiento varía, pudiendo ser medido. Los pequeños sensores están ordenados en dicha matriz como en una cuadrícula. Cada sensor tiene una posición que viene determinada por una fila y por una columna. Periódicamente se mide la capacidad de cada pequeño sensor con el fin de evaluar si ha sufrido variaciones significativas. Para ello es necesario convertir la capacidad del sensor en un valor que posteriormente es procesado digitalmente. Por otro lado, con el fin de mejorar la efectividad en el uso de los sensores táctiles 2D desarrollados, se ha estudiado el modo de incorporar un sistema actuador. De esta forma, el usuario recibe una retroalimentación indicando que la orden o acción ha sido reconocida. Para ello, se ha complementado la matriz de sensores capacitivos con una pantalla electroluminiscente también impresa. El resultado final ofrece una solución que combina un sensor táctil 2D con un actuador electroluminiscente realizado mediante impresión electrónica sobre sustrato textil. Posteriormente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D empleando una combinación de sensores impresos también sobre sustrato textil. En este tipo de sensor 3D, se envía una señal que genera un campo eléctrico sobre los sensores impresos. Esto se lleva a cabo mediante un electrodo de transmisión situado muy cerca de ellos. El campo generado es recibido por los sensores y convertido a señales eléctricas. Para ello, los sensores se basan en electrodos que actúan de receptores. Si una persona coloca su mano dentro del área de emisión, se crea una perturbación de las líneas de los campos eléctricos. Esto es debido a la desviación de las líneas de campo a tierra utilizando la conductividad intrínseca del cuerpo humano. Esta perturbación cambia/afecta a las señales recibidas por los electrodos. Las variaciones captadas por todos los electrodos son procesadas de forma conjunta pudiendo determinar la posición y el movimiento de la mano sobre la superficie del sensor. Finalmente, se ha llevado a cabo el desarrollo de un sensor de gestos 3D mejorado. Al igual que el desarrollo anterior, permite la detección de gestos sin necesidad de contacto, pero incrementando la distancia de alcance. Además de la tecnología de impresión electrónica, se ha evaluado el empleo de otras dos tecnologías de fabricación textil.[CA] La present tesi doctoral té com a objectiu fonamental el desenvolupament de nous sensors i actuadors fent servir la tecnologia de electrònica impresa, també coneguda com Printed Electronics. Es va fer us de materials polimèrics conductors, semiconductors i dielèctrics sobre substrats flexibles i/o elàstics. Per mitjà de dissenys i processos d'aplicació adequats, és possible fabricar sensors capaços d'interactuar amb l'entorn. D'aquesta manera, es poden incorporar als substrats, com ara teixits tèxtils, funcionalitats específiques de mesurament de l'entorn i de resposta davant canvis d'aquest. Addicionalment, és necessari incloure sistemes electrònics, capaços de realitzar el processament de les dades obtingudes, així com del seu registre. En el desenvolupament d'aquests sensors i actuadors es combinen les propietats físiques dels diferents materials de forma precisa. Cal dissenyar estructures multicapa on les propietats d'uns materials interaccionen amb les de la resta. manera El resultat es un sensor capaç de captar variacions físiques de l'entorn, i convertirles en senyals que poden ser processades i convertides en dades. D'una banda, s'ha desenvolupat un sensor tàctil imprès sobre substrat tèxtil per a reconeixement de gestos en 2D. Aquest sensor es compon d'una matriu formada amb petits sensors capacitius basats en una estructura de tipus condensador. Aquests s'han dissenyat de manera que, si un dit o un altre objecte amb propietats capacitives s'aproxima prou, el seu comportament varia, podent ser mesurat. Els petits sensors estan ordenats en aquesta matriu com en una quadrícula. Cada sensor té una posició que ve determinada per una fila i per una columna. Periòdicament es mesura la capacitat de cada petit sensor per tal d'avaluar si ha sofert variacions significatives. Per a això cal convertir la capacitat del sensor a un valor que posteriorment és processat digitalment. D'altra banda, per tal de millorar l'efectivitat en l'ús dels sensors tàctils 2D desenvolupats, s'ha estudiat la manera d'incorporar un sistema actuador. D'aquesta forma, l'usuari rep una retroalimentació indicant que l'ordre o acció ha estat reconeguda. Per a això, s'ha complementat la matriu de sensors capacitius amb una pantalla electroluminescent també impresa. El resultat final ofereix una solució que combina un sensor tàctil 2D amb un actuador electroluminescent realitzat mitjançant impressió electrònica sobre substrat tèxtil. Posteriorment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D emprant una combinació d'un mínim de sensors impresos també sobre substrat tèxtil. En aquest tipus de sensor 3D, s'envia un senyal que genera un camp elèctric sobre els sensors impresos. Això es porta a terme mitjançant un elèctrode de transmissió situat molt a proper a ells. El camp generat és rebut pels sensors i convertit a senyals elèctrics. Per això, els sensors es basen en elèctrodes que actuen de receptors. Si una persona col·loca la seva mà dins de l'àrea d'emissió, es crea una pertorbació de les línies dels camps elèctrics. Això és a causa de la desviació de les línies de camp a terra utilitzant la conductivitat intrínseca de el cos humà. Aquesta pertorbació afecta als senyals rebudes pels elèctrodes. Les variacions captades per tots els elèctrodes són processades de manera conjunta per determinar la posició i el moviment de la mà sobre la superfície del sensor. Finalment, s'ha dut a terme el desenvolupament d'un sensor de gestos 3D millorat. A l'igual que el desenvolupament anterior, permet la detecció de gestos sense necessitat de contacte, però incrementant la distància d'abast. A més a més de la tecnologia d'impressió electrònica, s'ha avaluat emprar altres dues tecnologies de fabricació tèxtil.Ferri Pascual, J. (2020). Tactile and Touchless Sensors Printed on Flexible Textile Substrates for Gesture Recognition [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/153075TESISCompendi

    Textile-Based Sensors and Smart Clothing System for Respiratory Monitoring

    Get PDF
    Long-term respiratory monitoring provides valuable information for diagnostic and clinical treatment. Traditional measures of respiration require a mouthpiece or a mask, neither of which can be used as ubiquitous healthcare equipment. Using a smart clothing system seems to be a better alternative. Researchers in the field of smart textiles have focused on the development of health-related products since the 1990s, and textile-based sensors used for respiratory measurements have been discussed in several projects. Although the soft and flexible characteristics of textile-based sensors make them attractive, the flexibility of the materials also affects the signal quality. In a laboratory situation, where each sensor is tested as a single element, this is not as critical as in a user situation, where the sensor is integrated into the clothing and worn by different users engaging in different activities. The principal objective of this thesis was to explore the possibility of performing reliable respiratory monitoring using a clothing platform. The research began by investigating the possible methods and materials that can be used to produce textile-based sensors for respiratory monitoring applications. The aim was to determine the most suitable method for integrating the sensing function into the clothing system. Study results have shown that sensors made with a conductive coating demonstrated superior performance in terms of sensitivity, stability, and reliability. Therefore, five prototype systems based on conductive coating technique were developed. Sensor placement, signal collection techniques, and the clothing system configuration were the main concerns, while issues related to the sensor wearability, maintenance, and aesthetic appearance, as well as the environment and health, were also discussed. Knitting was found to be the most economical method for producing the textile-based sensors; however, sensors made of knit fabric do not perform as well as the coated ones. Therefore, elastic-conductive hybrid yarns have been created to improve the electro-mechanical properties of knitted-based sensors, and eventually, a prototype with two sensors and a built-in data-bus was made by fully-fashion knitting technique. Two smart clothing system prototypes, based on conductive coating technique, were tested systematically by ten subjects. The first prototype consisted of one sensing element, and the results show that the smart clothing system could successfully monitor the subjects’ breathing patterns during sitting, standing, and different forms of running. The system has also proven to be useful in the observation of sleep apnea disorder symptoms. The second prototype consisted of two sensing elements. Apart from all the characteristics of the first prototype system, a system with two sensing elements can be used to determine the relationship between the rib cage and abdomen compartments, which provides information for certain diseases, e.g., cardiac arrhythmias. The second smart clothing system prototype was compared with a conventional respiratory belt for validation. Signals from the clothing system and the respiratory belt were collected simultaneously with a self-designed LabVIEW program, and further processed with MATLAB. Quantitative analyses were conducted based upon different comparison techniques, such as Pearson’s correlation, ANOVA and Fast Fourier Transform analysis. The results demonstrate that the smart clothing system can provide reliable respiratory measurements, with signals of comparable quality to the conventional respiratory belt. In addition, the wearability and user acceptance were studied by means of a survey. The survey results indicate that users were more comfortable with the smart clothing system and that most believe that using a smart clothing system will improve both health condition and quality of life

    Textile-Based Sensors and Smart Clothing System for Respiratory Monitoring

    Get PDF
    Long-term respiratory monitoring provides valuable information for diagnostic and clinical treatment. Traditional measures of respiration require a mouthpiece or a mask, neither of which can be used as ubiquitous healthcare equipment. Using a smart clothing system seems to be a better alternative. Researchers in the field of smart textiles have focused on the development of health-related products since the 1990s, and textile-based sensors used for respiratory measurements have been discussed in several projects. Although the soft and flexible characteristics of textile-based sensors make them attractive, the flexibility of the materials also affects the signal quality. In a laboratory situation, where each sensor is tested as a single element, this is not as critical as in a user situation, where the sensor is integrated into the clothing and worn by different users engaging in different activities. The principal objective of this thesis was to explore the possibility of performing reliable respiratory monitoring using a clothing platform. The research began by investigating the possible methods and materials that can be used to produce textile-based sensors for respiratory monitoring applications. The aim was to determine the most suitable method for integrating the sensing function into the clothing system. Study results have shown that sensors made with a conductive coating demonstrated superior performance in terms of sensitivity, stability, and reliability. Therefore, five prototype systems based on conductive coating technique were developed. Sensor placement, signal collection techniques, and the clothing system configuration were the main concerns, while issues related to the sensor wearability, maintenance, and aesthetic appearance, as well as the environment and health, were also discussed. Knitting was found to be the most economical method for producing the textile-based sensors; however, sensors made of knit fabric do not perform as well as the coated ones. Therefore, elastic-conductive hybrid yarns have been created to improve the electro-mechanical properties of knitted-based sensors, and eventually, a prototype with two sensors and a built-in data-bus was made by fully-fashion knitting technique. Two smart clothing system prototypes, based on conductive coating technique, were tested systematically by ten subjects. The first prototype consisted of one sensing element, and the results show that the smart clothing system could successfully monitor the subjects’ breathing patterns during sitting, standing, and different forms of running. The system has also proven to be useful in the observation of sleep apnea disorder symptoms. The second prototype consisted of two sensing elements. Apart from all the characteristics of the first prototype system, a system with two sensing elements can be used to determine the relationship between the rib cage and abdomen compartments, which provides information for certain diseases, e.g., cardiac arrhythmias. The second smart clothing system prototype was compared with a conventional respiratory belt for validation. Signals from the clothing system and the respiratory belt were collected simultaneously with a self-designed LabVIEW program, and further processed with MATLAB. Quantitative analyses were conducted based upon different comparison techniques, such as Pearson’s correlation, ANOVA and Fast Fourier Transform analysis. The results demonstrate that the smart clothing system can provide reliable respiratory measurements, with signals of comparable quality to the conventional respiratory belt. In addition, the wearability and user acceptance were studied by means of a survey. The survey results indicate that users were more comfortable with the smart clothing system and that most believe that using a smart clothing system will improve both health condition and quality of life

    A NEUROMORPHIC APPROACH TO TACTILE PERCEPTION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore