3,727 research outputs found

    Robust and Efficient Subspace Segmentation via Least Squares Regression

    Full text link
    This paper studies the subspace segmentation problem which aims to segment data drawn from a union of multiple linear subspaces. Recent works by using sparse representation, low rank representation and their extensions attract much attention. If the subspaces from which the data drawn are independent or orthogonal, they are able to obtain a block diagonal affinity matrix, which usually leads to a correct segmentation. The main differences among them are their objective functions. We theoretically show that if the objective function satisfies some conditions, and the data are sufficiently drawn from independent subspaces, the obtained affinity matrix is always block diagonal. Furthermore, the data sampling can be insufficient if the subspaces are orthogonal. Some existing methods are all special cases. Then we present the Least Squares Regression (LSR) method for subspace segmentation. It takes advantage of data correlation, which is common in real data. LSR encourages a grouping effect which tends to group highly correlated data together. Experimental results on the Hopkins 155 database and Extended Yale Database B show that our method significantly outperforms state-of-the-art methods. Beyond segmentation accuracy, all experiments demonstrate that LSR is much more efficient.Comment: European Conference on Computer Vision, 201

    Scaled Simplex Representation for Subspace Clustering

    Full text link
    The self-expressive property of data points, i.e., each data point can be linearly represented by the other data points in the same subspace, has proven effective in leading subspace clustering methods. Most self-expressive methods usually construct a feasible affinity matrix from a coefficient matrix, obtained by solving an optimization problem. However, the negative entries in the coefficient matrix are forced to be positive when constructing the affinity matrix via exponentiation, absolute symmetrization, or squaring operations. This consequently damages the inherent correlations among the data. Besides, the affine constraint used in these methods is not flexible enough for practical applications. To overcome these problems, in this paper, we introduce a scaled simplex representation (SSR) for subspace clustering problem. Specifically, the non-negative constraint is used to make the coefficient matrix physically meaningful, and the coefficient vector is constrained to be summed up to a scalar s<1 to make it more discriminative. The proposed SSR based subspace clustering (SSRSC) model is reformulated as a linear equality-constrained problem, which is solved efficiently under the alternating direction method of multipliers framework. Experiments on benchmark datasets demonstrate that the proposed SSRSC algorithm is very efficient and outperforms state-of-the-art subspace clustering methods on accuracy. The code can be found at https://github.com/csjunxu/SSRSC.Comment: Accepted by IEEE Transactions on Cybernetics. 13 pages, 9 figures, 10 tables. Code can be found at https://github.com/csjunxu/SSRS

    Correlation Adaptive Subspace Segmentation by Trace Lasso

    Full text link
    This paper studies the subspace segmentation problem. Given a set of data points drawn from a union of subspaces, the goal is to partition them into their underlying subspaces they were drawn from. The spectral clustering method is used as the framework. It requires to find an affinity matrix which is close to block diagonal, with nonzero entries corresponding to the data point pairs from the same subspace. In this work, we argue that both sparsity and the grouping effect are important for subspace segmentation. A sparse affinity matrix tends to be block diagonal, with less connections between data points from different subspaces. The grouping effect ensures that the highly corrected data which are usually from the same subspace can be grouped together. Sparse Subspace Clustering (SSC), by using â„“1\ell^1-minimization, encourages sparsity for data selection, but it lacks of the grouping effect. On the contrary, Low-Rank Representation (LRR), by rank minimization, and Least Squares Regression (LSR), by â„“2\ell^2-regularization, exhibit strong grouping effect, but they are short in subset selection. Thus the obtained affinity matrix is usually very sparse by SSC, yet very dense by LRR and LSR. In this work, we propose the Correlation Adaptive Subspace Segmentation (CASS) method by using trace Lasso. CASS is a data correlation dependent method which simultaneously performs automatic data selection and groups correlated data together. It can be regarded as a method which adaptively balances SSC and LSR. Both theoretical and experimental results show the effectiveness of CASS.Comment: International Conference on Computer Vision (ICCV), 201

    Image Segmentation Using Subspace Representation and Sparse Decomposition

    Full text link
    Image foreground extraction is a classical problem in image processing and vision, with a large range of applications. In this dissertation, we focus on the extraction of text and graphics in mixed-content images, and design novel approaches for various aspects of this problem. We first propose a sparse decomposition framework, which models the background by a subspace containing smooth basis vectors, and foreground as a sparse and connected component. We then formulate an optimization framework to solve this problem, by adding suitable regularizations to the cost function to promote the desired characteristics of each component. We present two techniques to solve the proposed optimization problem, one based on alternating direction method of multipliers (ADMM), and the other one based on robust regression. Promising results are obtained for screen content image segmentation using the proposed algorithm. We then propose a robust subspace learning algorithm for the representation of the background component using training images that could contain both background and foreground components, as well as noise. With the learnt subspace for the background, we can further improve the segmentation results, compared to using a fixed subspace. Lastly, we investigate a different class of signal/image decomposition problem, where only one signal component is active at each signal element. In this case, besides estimating each component, we need to find their supports, which can be specified by a binary mask. We propose a mixed-integer programming problem, that jointly estimates the two components and their supports through an alternating optimization scheme. We show the application of this algorithm on various problems, including image segmentation, video motion segmentation, and also separation of text from textured images.Comment: PhD Dissertation, NYU, 201

    Fast Approximate L_infty Minimization: Speeding Up Robust Regression

    Full text link
    Minimization of the L∞L_\infty norm, which can be viewed as approximately solving the non-convex least median estimation problem, is a powerful method for outlier removal and hence robust regression. However, current techniques for solving the problem at the heart of L∞L_\infty norm minimization are slow, and therefore cannot scale to large problems. A new method for the minimization of the L∞L_\infty norm is presented here, which provides a speedup of multiple orders of magnitude for data with high dimension. This method, termed Fast L∞L_\infty Minimization, allows robust regression to be applied to a class of problems which were previously inaccessible. It is shown how the L∞L_\infty norm minimization problem can be broken up into smaller sub-problems, which can then be solved extremely efficiently. Experimental results demonstrate the radical reduction in computation time, along with robustness against large numbers of outliers in a few model-fitting problems.Comment: 11 page

    Accelerated Sparse Subspace Clustering

    Full text link
    State-of-the-art algorithms for sparse subspace clustering perform spectral clustering on a similarity matrix typically obtained by representing each data point as a sparse combination of other points using either basis pursuit (BP) or orthogonal matching pursuit (OMP). BP-based methods are often prohibitive in practice while the performance of OMP-based schemes are unsatisfactory, especially in settings where data points are highly similar. In this paper, we propose a novel algorithm that exploits an accelerated variant of orthogonal least-squares to efficiently find the underlying subspaces. We show that under certain conditions the proposed algorithm returns a subspace-preserving solution. Simulation results illustrate that the proposed method compares favorably with BP-based method in terms of running time while being significantly more accurate than OMP-based schemes

    Evolutionary Self-Expressive Models for Subspace Clustering

    Full text link
    The problem of organizing data that evolves over time into clusters is encountered in a number of practical settings. We introduce evolutionary subspace clustering, a method whose objective is to cluster a collection of evolving data points that lie on a union of low-dimensional evolving subspaces. To learn the parsimonious representation of the data points at each time step, we propose a non-convex optimization framework that exploits the self-expressiveness property of the evolving data while taking into account representation from the preceding time step. To find an approximate solution to the aforementioned non-convex optimization problem, we develop a scheme based on alternating minimization that both learns the parsimonious representation as well as adaptively tunes and infers a smoothing parameter reflective of the rate of data evolution. The latter addresses a fundamental challenge in evolutionary clustering -- determining if and to what extent one should consider previous clustering solutions when analyzing an evolving data collection. Our experiments on both synthetic and real-world datasets demonstrate that the proposed framework outperforms state-of-the-art static subspace clustering algorithms and existing evolutionary clustering schemes in terms of both accuracy and running time, in a range of scenarios

    Fast Subspace Clustering Based on the Kronecker Product

    Full text link
    Subspace clustering is a useful technique for many computer vision applications in which the intrinsic dimension of high-dimensional data is often smaller than the ambient dimension. Spectral clustering, as one of the main approaches to subspace clustering, often takes on a sparse representation or a low-rank representation to learn a block diagonal self-representation matrix for subspace generation. However, existing methods require solving a large scale convex optimization problem with a large set of data, with computational complexity reaches O(N^3) for N data points. Therefore, the efficiency and scalability of traditional spectral clustering methods can not be guaranteed for large scale datasets. In this paper, we propose a subspace clustering model based on the Kronecker product. Due to the property that the Kronecker product of a block diagonal matrix with any other matrix is still a block diagonal matrix, we can efficiently learn the representation matrix which is formed by the Kronecker product of k smaller matrices. By doing so, our model significantly reduces the computational complexity to O(kN^{3/k}). Furthermore, our model is general in nature, and can be adapted to different regularization based subspace clustering methods. Experimental results on two public datasets show that our model significantly improves the efficiency compared with several state-of-the-art methods. Moreover, we have conducted experiments on synthetic data to verify the scalability of our model for large scale datasets.Comment: 16 pages, 2 figure

    Correntropy Induced L2 Graph for Robust Subspace Clustering

    Full text link
    In this paper, we study the robust subspace clustering problem, which aims to cluster the given possibly noisy data points into their underlying subspaces. A large pool of previous subspace clustering methods focus on the graph construction by different regularization of the representation coefficient. We instead focus on the robustness of the model to non-Gaussian noises. We propose a new robust clustering method by using the correntropy induced metric, which is robust for handling the non-Gaussian and impulsive noises. Also we further extend the method for handling the data with outlier rows/features. The multiplicative form of half-quadratic optimization is used to optimize the non-convex correntropy objective function of the proposed models. Extensive experiments on face datasets well demonstrate that the proposed methods are more robust to corruptions and occlusions.Comment: International Conference on Computer Vision (ICCV), 201

    Low-Rank Modeling and Its Applications in Image Analysis

    Full text link
    Low-rank modeling generally refers to a class of methods that solve problems by representing variables of interest as low-rank matrices. It has achieved great success in various fields including computer vision, data mining, signal processing and bioinformatics. Recently, much progress has been made in theories, algorithms and applications of low-rank modeling, such as exact low-rank matrix recovery via convex programming and matrix completion applied to collaborative filtering. These advances have brought more and more attentions to this topic. In this paper, we review the recent advance of low-rank modeling, the state-of-the-art algorithms, and related applications in image analysis. We first give an overview to the concept of low-rank modeling and challenging problems in this area. Then, we summarize the models and algorithms for low-rank matrix recovery and illustrate their advantages and limitations with numerical experiments. Next, we introduce a few applications of low-rank modeling in the context of image analysis. Finally, we conclude this paper with some discussions.Comment: To appear in ACM Computing Survey
    • …
    corecore