8,685 research outputs found

    An efficient pattern-less background modeling based on scale invariant local states

    Get PDF
    A robust and efficient background modeling algorithm is crucial to the success of most of the intelligent video surveillance systems. Compared with intensity-based approaches, texture-based background modeling approaches have shown to be more robust against dynamic backgrounds and illumination changes, which are common in real life videos. However, many of the existing texture-based methods are too computationally expensive, which renders them useless in real-time applications. In this paper, a novel efficient texture-based background modeling algorithm is presented. Scale invariant local states (SILS) are introduced as pixel features for modeling a background pixel, and a pattern-less probabilistic measurement (PLPM) is derived to estimate the probability of a pixel being background from its SILS. An adaptive background modeling framework is also introduced for learning and representing a multi-modal background model. Experimental results show that the proposed method can run nearly 3 times faster than existing state-of-the-art texture-based method, without sacrificing the output quality. This allows more time for a real-time surveillance system to carry out other computationally intensive analysis on the detected foreground objects. © 2011 IEEE.published_or_final_versionThe 8th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS 2011), Klagenfurt, Austria, 30 Auguist-2 September 2011. In Proceedings of 8th AVSS, 2011, p. 285-29

    Total Variation Regularized Tensor RPCA for Background Subtraction from Compressive Measurements

    Full text link
    Background subtraction has been a fundamental and widely studied task in video analysis, with a wide range of applications in video surveillance, teleconferencing and 3D modeling. Recently, motivated by compressive imaging, background subtraction from compressive measurements (BSCM) is becoming an active research task in video surveillance. In this paper, we propose a novel tensor-based robust PCA (TenRPCA) approach for BSCM by decomposing video frames into backgrounds with spatial-temporal correlations and foregrounds with spatio-temporal continuity in a tensor framework. In this approach, we use 3D total variation (TV) to enhance the spatio-temporal continuity of foregrounds, and Tucker decomposition to model the spatio-temporal correlations of video background. Based on this idea, we design a basic tensor RPCA model over the video frames, dubbed as the holistic TenRPCA model (H-TenRPCA). To characterize the correlations among the groups of similar 3D patches of video background, we further design a patch-group-based tensor RPCA model (PG-TenRPCA) by joint tensor Tucker decompositions of 3D patch groups for modeling the video background. Efficient algorithms using alternating direction method of multipliers (ADMM) are developed to solve the proposed models. Extensive experiments on simulated and real-world videos demonstrate the superiority of the proposed approaches over the existing state-of-the-art approaches.Comment: To appear in IEEE TI

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Precise motion descriptors extraction from stereoscopic footage using DaVinci DM6446

    Get PDF
    A novel approach to extract target motion descriptors in multi-camera video surveillance systems is presented. Using two static surveillance cameras with partially overlapped field of view (FOV), control points (unique points from each camera) are identified in regions of interest (ROI) from both cameras footage. The control points within the ROI are matched for correspondence and a meshed Euclidean distance based signature is computed. A depth map is estimated using disparity of each control pair and the ROI is graded into number of regions with the help of relative depth information of the control points. The graded regions of different depths will help calculate accurately the pace of the moving target and also its 3D location. The advantage of estimating a depth map for background static control points over depth map of the target itself is its accuracy and robustness to outliers. The performance of the algorithm is evaluated in the paper using several test sequences. Implementation issues of the algorithm onto the TI DaVinci DM6446 platform are considered in the paper
    • …
    corecore