627 research outputs found

    OA-Bug: An Olfactory-Auditory Augmented Bug Algorithm for Swarm Robots in a Denied Environment

    Full text link
    Searching in a denied environment is challenging for swarm robots as no assistance from GNSS, mapping, data sharing, and central processing is allowed. However, using olfactory and auditory to cooperate like animals could be an important way to improve the collaboration of swarm robots. In this paper, an Olfactory-Auditory augmented Bug algorithm (OA-Bug) is proposed for a swarm of autonomous robots to explore a denied environment. A simulation environment is built to measure the performance of OA-Bug. The coverage of the search task using OA-Bug can reach 96.93%, with the most significant improvement of 40.55% compared with a similar algorithm, SGBA. Furthermore, experiments are conducted on real swarm robots to prove the validity of OA-Bug. Results show that OA-Bug can improve the performance of swarm robots in a denied environment.Comment: 7 pages, 5 figure

    Hopscotch: Robust Multi-agent Search

    Get PDF
    The task of searching a space is critical to a wide range of diverse applications such as land mine clearing and planetary exploration. Because applications frequently require searching remote or hazardous locations, and because the task is easily divisible, it is natural to consider the use of multi-robot teams to accomplish the search task. An important topic of research in this area is the division of the task among robot agents. Interrelated with subtask assignment is failure handling, in the sense that, when an agent fails, its part of the task must then be performed by other agents. This thesis describes Hopscotch, a multi-agent search strategy that divides the search area into a grid of lots. Each agent is assigned responsibility to search one lot at a time, and upon completing the search of that lot the agent is assigned a new lot. Assignment occurs in real time using a simple contract net. Because lots that have been previously searched are skipped, the order of search from the point of view of a particular agent is reminiscent of the progression of steps in the playground game of Hopscotch. Decomposition of the search area is a common approach to multi-agent search, and auction-based contract net strategies have appeared in recent literature as a method of task allocation in multi-agent systems. The Hopscotch strategy combines the two, with a strong focus on robust tolerance of agent failures. Contract nets typically divide all known tasks among available resources. In contrast, Hopscotch limits each agent to one assigned lot at a time, so that failure of an agent compels re-allocation of only one lot search task. Furthermore, the contract net is implemented in an unconventional manner that empowers each agent with responsibility for contract management. This novel combination of real-time assignment and decentralized management allows Hopscotch to resiliently cope with agent failures. The Hopscotch strategy was modeled and compared to other multi-agent strate- gies that tackle the search task in a variety of ways. Simulation results show that Hopscotch is failure-tolerant and very effective in comparison to the other approaches in terms of both search time and search efficiency. Although the search task modeled here is a basic one, results from simulations show the promise of using this strategy for more complicated scenarios, and with actual robot agents

    Distributed navigation of multi-robot systems for sensing coverage

    Full text link
    A team of coordinating mobile robots equipped with operation specific sensors can perform different coverage tasks. If the required number of robots in the team is very large then a centralized control system becomes a complex strategy. There are also some areas where centralized communication turns into an issue. So, a team of mobile robots for coverage tasks should have the ability of decentralized or distributed decision making. This thesis investigates decentralized control of mobile robots specifically for coverage problems. A decentralized control strategy is ideally based on local information and it can offer flexibility in case there is an increment or decrement in the number of mobile robots. We perform a broad survey of the existing literature for coverage control problems. There are different approaches associated with decentralized control strategy for coverage control problems. We perform a comparative review of these approaches and use the approach based on simple local coordination rules. These locally computed nearest neighbour rules are used to develop decentralized control algorithms for coverage control problems. We investigate this extensively used nearest neighbour rule-based approach for developing coverage control algorithms. In this approach, a mobile robot gives an equal importance to every neighbour robot coming under its communication range. We develop our control approach by making some of the mobile robots playing a more influential role than other members of the team. We develop the control algorithm based on nearest neighbour rules with weighted average functions. The approach based on this control strategy becomes efficient in terms of achieving a consensus on control inputs, say heading angle, velocity, etc. The decentralized control of mobile robots can also exhibit a cyclic behaviour under some physical constraints like a quantized orientation of the mobile robot. We further investigate the cyclic behaviour appearing due to the quantized control of mobile robots under some conditions. Our nearest neighbour rule-based approach offers a biased strategy in case of cyclic behaviour appearing in the team of mobile robots. We consider a clustering technique inside the team of mobile robots. Our decentralized control strategy calculates the similarity measure among the neighbours of a mobile robot. The team of mobile robots with the similarity measure based approach becomes efficient in achieving a fast consensus like on heading angle or velocity. We perform a rigorous mathematical analysis of our developed approach. We also develop a condition based on relaxed criteria for achieving consensus on velocity or heading angle of the mobile robots. Our validation approach is based on mathematical arguments and extensive computer simulations

    Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions

    Full text link
    [EN] Advances in information and signal processing technologies have a significant impact on autonomous driving (AD), improving driving safety while minimizing the efforts of human drivers with the help of advanced artificial intelligence (AI) techniques. Recently, deep learning (DL) approaches have solved several real-world problems of complex nature. However, their strengths in terms of control processes for AD have not been deeply investigated and highlighted yet. This survey highlights the power of DL architectures in terms of reliability and efficient real-time performance and overviews state-of-the-art strategies for safe AD, with their major achievements and limitations. Furthermore, it covers major embodiments of DL along the AD pipeline including measurement, analysis, and execution, with a focus on road, lane, vehicle, pedestrian, drowsiness detection, collision avoidance, and traffic sign detection through sensing and vision-based DL methods. In addition, we discuss on the performance of several reviewed methods by using different evaluation metrics, with critics on their pros and cons. Finally, this survey highlights the current issues of safe DL-based AD with a prospect of recommendations for future research, rounding up a reference material for newcomers and researchers willing to join this vibrant area of Intelligent Transportation Systems.This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) Grant funded by the Korea Government (MSIT) (2019-0-00136, Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation); The work of Javier Del Ser was supported by the Basque Government through the EMAITEK and ELKARTEK Programs, as well as by the Department of Education of this institution (Consolidated Research Group MATHMODE, IT1294-19); VHCA received support from the Brazilian National Council for Research and Development (CNPq, Grant #304315/2017-6 and #430274/2018-1).Muhammad, K.; Ullah, A.; Lloret, J.; Del Ser, J.; De Albuquerque, VHC. (2021). Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions. IEEE Transactions on Intelligent Transportation Systems. 22(7):4316-4336. https://doi.org/10.1109/TITS.2020.30322274316433622

    Imaging diffusional variance by MRI [public] : The role of tensor-valued diffusion encoding and tissue heterogeneity

    Get PDF
    Diffusion MRI provides a non-invasive probe of tissue microstructure. We recently proposed a novel method for diffusion-weighted imaging, so-called q-space trajectory encoding, that facilitates tensor-valued diffusion encoding. This method grants access to b-tensors with multiple shapes and enables us to probe previously unexplored aspects of the tissue microstructure. Specifically, we can disentangle diffusional heterogeneity that originates from isotropic and anisotropic tissue structures; we call this diffusional variance decomposition (DIVIDE).In Paper I, we investigated the statistical uncertainty of the total diffusional variance in the healthy brain. We found that the statistical power was heterogeneous between brain regions which needs to be taken into account when interpreting results.In Paper II, we showed how spherical tensor encoding can be used to separate the total diffusional variance into its isotropic and anisotropic components. We also performed initial validation of the parameters in phantoms, and demonstrated that the imaging sequence could be implemented on a high-performance clinical MRI system. In Paper III and V, we explored DIVIDE parameters in healthy brain tissue and tumor tissue. In healthy tissue, we found that diffusion anisotropy can be probed on the microscopic scale, and that metrics of anisotropy on the voxel scale are confounded by the orientation coherence of the microscopic structures. In meningioma and glioma tumors, we found a strong association between anisotropic variance and cell eccentricity, and between isotropic variance and variable cell density. In Paper IV, we developed a method to optimize waveforms for tensor-valued diffusion encoding, and in Paper VI we demonstrated that whole-brain DIVIDE is technically feasible at most MRI systems in clinically feasible scan times

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    ON META-NETWORKS, DEEP LEARNING, TIME AND JIHADISM

    Get PDF
    Il terrorismo di stampo jihadista rappresenta una minaccia per la società e una sfida per gli scienziati interessati a comprenderne la complessità. Questa complessità richiede costantemente nuovi sviluppi in termini di ricerca sul terrorismo. Migliorare la conoscenza empirica rispetto a tale fenomeno può potenzialmente contribuire a sviluppare applicazioni concrete e, in ultima istanza, a prevenire danni all’uomo. In considerazione di tali aspetti, questa tesi presenta un nuovo quadro metodologico che integra scienza delle reti, modelli stocastici e apprendimento profondo per far luce sul terrorismo jihadista sia a livello esplicativo che predittivo. In particolare, questo lavoro compara e analizza le organizzazioni jihadiste più attive a livello mondiale (ovvero lo Stato Islamico, i Talebani, Al Qaeda, Boko Haram e Al Shabaab) per studiarne i pattern comportamentali e predirne le future azioni. Attraverso un impianto teorico che si poggia sulla concentrazione spaziale del crimine e sulle prospettive strategiche del comportamento terroristico, questa tesi persegue tre obiettivi collegati utilizzando altrettante tecniche ibride. In primo luogo, verrà esplorata la complessità operativa delle organizzazioni jihadiste attraverso l’analisi di matrici stocastiche di transizione e verrà presentato un nuovo coefficiente, denominato “Normalized Transition Similarity”, che misura la somiglianza fra paia di gruppi in termini di dinamiche operative. In secondo luogo, i processi stocastici di Hawkes aiuteranno a testare la presenza di meccanismi di dipendenza temporale all’interno delle più comuni sotto-sequenze strategiche di ciascun gruppo. Infine, il framework integrerà la meta-reti complesse e l’apprendimento profondo per classificare e prevedere i target a maggiore rischio di essere colpiti dalle organizzazioni jihadiste durante i loro futuri attacchi. Per quanto riguarda i risultati, le matrici stocastiche di transizione mostrano che i gruppi terroristici possiedono un ricco e complesso repertorio di combinazioni in termini di armi e obiettivi. Inoltre, i processi di Hawkes indicano la presenza di diffusa self-excitability nelle sequenze di eventi. Infine, i modelli predittivi che sfruttano la flessibilità delle serie temporali derivanti da grafi dinamici e le reti neurali Long Short-Term Memory forniscono risultati promettenti rispetto ai target più a rischio. Nel complesso, questo lavoro ambisce a dimostrare come connessioni astratte e nascoste fra eventi possano essere fondamentali nel rivelare le meccaniche del comportamento jihadista e come processi memory-like (ovvero molteplici comportamenti ricorrenti, interconnessi e non randomici) possano risultare estremamente utili nel comprendere le modalità attraverso cui tali organizzazioni operano.Jihadist terrorism represents a global threat for societies and a challenge for scientists interested in understanding its complexity. This complexity continuously calls for developments in terrorism research. Enhancing the empirical knowledge on the phenomenon can potentially contribute to developing concrete real-world applications and, ultimately, to the prevention of societal damages. In light of these aspects, this work presents a novel methodological framework that integrates network science, mathematical modeling, and deep learning to shed light on jihadism, both at the explanatory and predictive levels. Specifically, this dissertation will compare and analyze the world's most active jihadist terrorist organizations (i.e. The Islamic State, the Taliban, Al Qaeda, Boko Haram, and Al Shabaab) to investigate their behavioral patterns and forecast their future actions. Building upon a theoretical framework that relies on the spatial concentration of terrorist violence and the strategic perspective of terrorist behavior, this dissertation will pursue three linked tasks, employing as many hybrid techniques. Firstly, explore the operational complexity of jihadist organizations using stochastic transition matrices and present Normalized Transition Similarity, a novel coefficient of pairwise similarity in terms of strategic behavior. Secondly, investigate the presence of time-dependent dynamics in attack sequences using Hawkes point processes. Thirdly, integrate complex meta-networks and deep learning to rank and forecast most probable future targets attacked by the jihadist groups. Concerning the results, stochastic transition matrices show that terrorist groups possess a complex repertoire of combinations in the use of weapons and targets. Furthermore, Hawkes models indicate the diffused presence of self-excitability in attack sequences. Finally, forecasting models that exploit the flexibility of graph-derived time series and Long Short-Term Memory networks provide promising results in terms of correct predictions of most likely terrorist targets. Overall, this research seeks to reveal how hidden abstract connections between events can be exploited to unveil jihadist mechanics and how memory-like processes (i.e. multiple non-random parallel and interconnected recurrent behaviors) might illuminate the way in which these groups act
    corecore