335 research outputs found

    Spatial Pyramid Encoding with Convex Length Normalization for Text-Independent Speaker Verification

    Full text link
    In this paper, we propose a new pooling method called spatial pyramid encoding (SPE) to generate speaker embeddings for text-independent speaker verification. We first partition the output feature maps from a deep residual network (ResNet) into increasingly fine sub-regions and extract speaker embeddings from each sub-region through a learnable dictionary encoding layer. These embeddings are concatenated to obtain the final speaker representation. The SPE layer not only generates a fixed-dimensional speaker embedding for a variable-length speech segment, but also aggregates the information of feature distribution from multi-level temporal bins. Furthermore, we apply deep length normalization by augmenting the loss function with ring loss. By applying ring loss, the network gradually learns to normalize the speaker embeddings using model weights themselves while preserving convexity, leading to more robust speaker embeddings. Experiments on the VoxCeleb1 dataset show that the proposed system using the SPE layer and ring loss-based deep length normalization outperforms both i-vector and d-vector baselines.Comment: 5 pages, 2 figures, Interspeech 201

    H-VECTORS: Utterance-level Speaker Embedding Using A Hierarchical Attention Model

    Get PDF
    In this paper, a hierarchical attention network to generate utterance-level embeddings (H-vectors) for speaker identification is proposed. Since different parts of an utterance may have different contributions to speaker identities, the use of hierarchical structure aims to learn speaker related information locally and globally. In the proposed approach, frame-level encoder and attention are applied on segments of an input utterance and generate individual segment vectors. Then, segment level attention is applied on the segment vectors to construct an utterance representation. To evaluate the effectiveness of the proposed approach, NIST SRE 2008 Part1 dataset is used for training, and two datasets, Switchboard Cellular part1 and CallHome American English Speech, are used to evaluate the quality of extracted utterance embeddings on speaker identification and verification tasks. In comparison with two baselines, X-vector, X-vector+Attention, the obtained results show that H-vectors can achieve a significantly better performance. Furthermore, the extracted utterance-level embeddings are more discriminative than the two baselines when mapped into a 2D space using t-SNE
    • …
    corecore