6,782 research outputs found

    3D FACE RECOGNITION USING LOCAL FEATURE BASED METHODS

    Get PDF
    Face recognition has attracted many researchers’ attention compared to other biometrics due to its non-intrusive and friendly nature. Although several methods for 2D face recognition have been proposed so far, there are still some challenges related to the 2D face including illumination, pose variation, and facial expression. In the last few decades, 3D face research area has become more interesting since shape and geometry information are used to handle challenges from 2D faces. Existing algorithms for face recognition are divided into three different categories: holistic feature-based, local feature-based, and hybrid methods. According to the literature, local features have shown better performance relative to holistic feature-based methods under expression and occlusion challenges. In this dissertation, local feature-based methods for 3D face recognition have been studied and surveyed. In the survey, local methods are classified into three broad categories which consist of keypoint-based, curve-based, and local surface-based methods. Inspired by keypoint-based methods which are effective to handle partial occlusion, structural context descriptor on pyramidal shape maps and texture image has been proposed in a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score in both texture and shape modalities. The survey shows local surface-based methods are efficient to handle facial expression. Accordingly, a local derivative pattern is introduced to extract distinct features from depth map in this work. In addition, the local derivative pattern is applied on surface normals. Most 3D face recognition algorithms are focused to utilize the depth information to detect and extract features. Compared to depth maps, surface normals of each point can determine the facial surface orientation, which provides an efficient facial surface representation to extract distinct features for recognition task. An Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space more discriminative. Expression and occlusion robust analysis using the information from the normal maps are investigated by dividing the facial region into patches. A novel hybrid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM classifier in a weighted scheme. The proposed algorithms have been evaluated on four widely used 3D face databases; FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effectiveness of the proposed approaches. The main contribution of this work lies in identification and analysis of effective local features and a classification method for improving 3D face recognition performance

    An Open Source C++ Implementation of Multi-Threaded Gaussian Mixture Models, k-Means and Expectation Maximisation

    Get PDF
    Modelling of multivariate densities is a core component in many signal processing, pattern recognition and machine learning applications. The modelling is often done via Gaussian mixture models (GMMs), which use computationally expensive and potentially unstable training algorithms. We provide an overview of a fast and robust implementation of GMMs in the C++ language, employing multi-threaded versions of the Expectation Maximisation (EM) and k-means training algorithms. Multi-threading is achieved through reformulation of the EM and k-means algorithms into a MapReduce-like framework. Furthermore, the implementation uses several techniques to improve numerical stability and modelling accuracy. We demonstrate that the multi-threaded implementation achieves a speedup of an order of magnitude on a recent 16 core machine, and that it can achieve higher modelling accuracy than a previously well-established publically accessible implementation. The multi-threaded implementation is included as a user-friendly class in recent releases of the open source Armadillo C++ linear algebra library. The library is provided under the permissive Apache~2.0 license, allowing unencumbered use in commercial products

    A continuous analogue of the tensor-train decomposition

    Full text link
    We develop new approximation algorithms and data structures for representing and computing with multivariate functions using the functional tensor-train (FT), a continuous extension of the tensor-train (TT) decomposition. The FT represents functions using a tensor-train ansatz by replacing the three-dimensional TT cores with univariate matrix-valued functions. The main contribution of this paper is a framework to compute the FT that employs adaptive approximations of univariate fibers, and that is not tied to any tensorized discretization. The algorithm can be coupled with any univariate linear or nonlinear approximation procedure. We demonstrate that this approach can generate multivariate function approximations that are several orders of magnitude more accurate, for the same cost, than those based on the conventional approach of compressing the coefficient tensor of a tensor-product basis. Our approach is in the spirit of other continuous computation packages such as Chebfun, and yields an algorithm which requires the computation of "continuous" matrix factorizations such as the LU and QR decompositions of vector-valued functions. To support these developments, we describe continuous versions of an approximate maximum-volume cross approximation algorithm and of a rounding algorithm that re-approximates an FT by one of lower ranks. We demonstrate that our technique improves accuracy and robustness, compared to TT and quantics-TT approaches with fixed parameterizations, of high-dimensional integration, differentiation, and approximation of functions with local features such as discontinuities and other nonlinearities

    Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors

    Get PDF
    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO (4×10−244 \times 10^{-24} Hz−1/2^{-1/2}). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8×10−266.8 \times 10^{-26} strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2×10−251.2 \times 10^{-25} (25 Hz) to 2.2×10−262.2 \times 10^{-26} (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.Comment: 33 pages, 11 figure

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images
    • …
    corecore