124,825 research outputs found

    CAutoCSD-evolutionary search and optimisation enabled computer automated control system design

    Get PDF
    This paper attempts to set a unified scene for various linear time-invariant (LTI) control system design schemes, by transforming the existing concept of 'Computer-Aided Control System Design' (CACSD) to the novel 'Computer-Automated Control System Design' (CAutoCSD). The first step towards this goal is to accommodate, under practical constraints, various design objectives that are desirable in both time and frequency-domains. Such performance-prioritised unification is aimed to relieve practising engineers from having to select a particular control scheme and from sacrificing certain performance goals resulting from pre-committing to the adopted scheme. With the recent progress in evolutionary computing based extra-numeric, multi-criterion search and optimisation techniques, such unification of LTI control schemes becomes feasible, analytically and practically, and the resultant designs can be creative. The techniques developed are applied to, and illustrated by, three design problems. The unified approach automatically provides an integrator for zero-steady state error in velocity control of a DC motor, meets multiple objectives in designing an LTI controller for a non-minimum phase plant and offers a high-performing LTI controller network for a nonlinear chemical process

    Robust Power Allocation and Outage Analysis for Secrecy in Independent Parallel Gaussian Channels

    Full text link
    This letter studies parallel independent Gaussian channels with uncertain eavesdropper channel state information (CSI). Firstly, we evaluate the probability of zero secrecy rate in this system for (i) given instantaneous channel conditions and (ii) a Rayleigh fading scenario. Secondly, when non-zero secrecy is achievable in the low SNR regime, we aim to solve a robust power allocation problem which minimizes the outage probability at a target secrecy rate. We bound the outage probability and obtain a linear fractional program that takes into account the uncertainty in eavesdropper CSI while allocating power on the parallel channels. Problem structure is exploited to solve this optimization problem efficiently. We find the proposed scheme effective for uncertain eavesdropper CSI in comparison with conventional power allocation schemes.Comment: 4 pages, 2 figures. Author version of the paper published in IEEE Wireless Communications Letters. Published version is accessible at http://dx.doi.org/10.1109/LWC.2015.249734

    A New Spherical Harmonics Scheme for Multi-Dimensional Radiation Transport I: Static Matter Configurations

    Get PDF
    Recent work by McClarren & Hauck [29] suggests that the filtered spherical harmonics method represents an efficient, robust, and accurate method for radiation transport, at least in the two-dimensional (2D) case. We extend their work to the three-dimensional (3D) case and find that all of the advantages of the filtering approach identified in 2D are present also in the 3D case. We reformulate the filter operation in a way that is independent of the timestep and of the spatial discretization. We also explore different second- and fourth-order filters and find that the second-order ones yield significantly better results. Overall, our findings suggest that the filtered spherical harmonics approach represents a very promising method for 3D radiation transport calculations.Comment: 29 pages, 13 figures. Version matching the one in Journal of Computational Physic

    Patchiness and Demographic Noise in Three Ecological Examples

    Full text link
    Understanding the causes and effects of spatial aggregation is one of the most fundamental problems in ecology. Aggregation is an emergent phenomenon arising from the interactions between the individuals of the population, able to sense only -at most- local densities of their cohorts. Thus, taking into account the individual-level interactions and fluctuations is essential to reach a correct description of the population. Classic deterministic equations are suitable to describe some aspects of the population, but leave out features related to the stochasticity inherent to the discreteness of the individuals. Stochastic equations for the population do account for these fluctuation-generated effects by means of demographic noise terms but, owing to their complexity, they can be difficult (or, at times, impossible) to deal with. Even when they can be written in a simple form, they are still difficult to numerically integrate due to the presence of the "square-root" intrinsic noise. In this paper, we discuss a simple way to add the effect of demographic stochasticity to three classic, deterministic ecological examples where aggregation plays an important role. We study the resulting equations using a recently-introduced integration scheme especially devised to integrate numerically stochastic equations with demographic noise. Aimed at scrutinizing the ability of these stochastic examples to show aggregation, we find that the three systems not only show patchy configurations, but also undergo a phase transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy

    Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials

    Full text link
    In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi of the one-dimensional Schroedinger equation, such that the components Psi1 and Psi2 approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well-behaved, even when Psi has many nodes, or is wildly oscillatory. A modification for discontinuous potential stationary stattering states was presented in a second paper [J. Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant velocity trajectory version is also developed.Comment: 16 pages and 14 figure
    corecore