165 research outputs found

    Lower-Limb Wearable Exoskeleton

    Get PDF

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201

    Commande robuste référencée intention d'une orthèse active pour l'assistance fonctionnelle aux mouvements du genou

    Get PDF
    Le nombre croissant de personnes âgées dans le monde exige de relever de nouveaux défis sociétaux, notamment en termes de services d'aide et de soins de santé. Avec les récents progrès technologiques, la robotique apparaît comme une solution prometteuse pour développer des systèmes visant à faciliter et améliorer les conditions de vie de cette population. Cette thèse vise la proposition et la validation d'une approche de commande robuste et référencée intention d'une orthèse active, destinée à assister des mouvements de flexion/extension du genou pour des personnes souffrant de pathologies de cette articulation. La commande par modes glissants d'ordre 2 que nous proposons permet de prendre en compte les non-linéarités ainsi que les incertitudes paramétriques résultant de la dynamique du système équivalent orthèse-membre inférieur. Elle permet également de garantir d'une part, un bon suivi de la trajectoire désirée imposée par le thérapeute ou par le sujet lui-même, et d'autre part, une bonne robustesse vis-à-vis des perturbations externes pouvant se produire lors des mouvements de flexion/extension. Dans cette thèse, nous proposons également un modèle neuronal de type Perceptron Multi-Couches pour l'estimation de l'intention du sujet à partir de la mesure des signaux EMG caractérisant les activités musculaires volontaires du groupe musculaire quadriceps. Cette approche permet de s'affranchir d'un modèle d'activation et de contraction musculaire complexe. L'ensemble des travaux a été validé expérimentalement avec la participation volontaire de plusieurs sujets validesThe increasing number of elderly in the world reveals today new societal challenges, particularly in terms of healthcare and assistance services. With recent advances in technology, robotics appears as a promising solution to develop systems that improve the living conditions of this aging population. This thesis aims at proposing and validating an approach for robust control of an active orthosis, based on the subject intention. This orthosis is designed to assist flexion/ extension movements of the knee for people suffering from knee joint deficiencies. The proposed second order sliding mode control allows to take into account the nonlinearities and parametric uncertainties resulting from the dynamics of the equivalent lower limb-orthosis system. It also ensures on one hand, a good tracking performance of the desired trajectory imposed by the therapist or the subject itself, and on the second hand, a satisfactory robustness with respect to external disturbances that may occur during flexion and extension of the knee joint. In this thesis, a neural model based on Multi-Layer Perceptron is used to estimate the subject's intention from the measurement of the EMG signals characterizing the voluntary activities of the quadriceps muscle group. This approach overcomes the complex modeling of the muscular activation and contraction dynamics. All the proposed approaches in this thesis have been validated experimentally with the voluntary participation of several healthy subjectsPARIS-EST-Université (770839901) / SudocSudocFranceF

    Adaptive control for wearable robots in human-centered rehabilitation tasks

    Get PDF
    Robotic rehabilitation therapies have been improving by providing the needed assistance to the patient, in a human-centered environment, and also helping the therapist to choose the necessary procedure. This thesis presents an adaptive "Assistance-as-needed" strategy which adheres to the specific needs of the patient and with the inputs from the therapist, whenever needed. The exertion of assistive and responsive behavior of the lower limb wearable robot is dedicated for the rehabilitation of incomplete spinal cord injury (SCI) patients. The main objective is to propose and evaluate an adaptive control model on a wearable robot, assisting the user and adhering to their needs, with no or less combination of external devices. The adaptation must be more interactive to understand the user needs and their volitional orders. Similarly, by using the existing muscular strength, in incomplete SCI patients, as a motivation to pursue the movement and assist them, only when needed. The adaptive behavior of the wearable robot is proposed by monitoring the interaction and movement of the user. This adaptation is achieved by modulating the stiffness of the exoskeleton in function of joint parameters, such as positions and interaction torques. These joint parameters are measured from the user independently and then used to update the new stiffness value. The adaptive algorithm performs with no need of external sensors, making it simple in terms of usage. In terms of rehabilitation, it is also desirable to be compatible with combination of assistive devices such as muscle stimulation, neural activity (BMI) and body balance (Wii), to deliver a user friendly and effective therapy. Combination of two control approaches has been employed, to improve the efficiency of the adaptive control model and was evaluated using a wearable lower limb exoskeleton device, H1. The control approaches, Hierarchical and Task based approach have been used to assist the patient as needed and simultaneously motivate the patient to pursue the therapy. Hierarchical approach facilitates combination of multiple devices to deliver an effective therapy by categorizing the control architecture in two layers, Low level and High level control. Task-based approaches engage in each task individually and allow the possibility to combine them at any point of time. It is also necessary to provide an interaction based approach to ensure the complete involvement of the user and for an effective therapy. By means of this dissertation, a task based adaptive control is proposed, in function of human-orthosis interaction, which is applied on a hierarchical control scheme. This control scheme is employed in a wearable robot, with the intention to be applied or accommodated to different pathologies, with its adaptive capabilities. The adaptive control model for gait assistance provides a comprehensive solution through a single implementation: Adaptation inside a gait cycle, continuous support through gait training and in real time. The performance of this control model has been evaluated with healthy subjects, as a preliminary study, and with paraplegic patients. Results of the healthy subjects showed a significant change in the pattern of the interaction torques, elucidating a change in the effort and adaptation to the user movement. In case of patients, the adaptation showed a significant improvement in the joint performance (flexion/extension range) and change in interaction torques. The change in interaction torques (positive to negative) reflects the active participation of the patient, which also explained the adaptive performance. The patients also reported that the movement of the exoskeleton is flexible and the walking patterns were similar to their own distinct patterns. The presented work is performed as part of the project HYPER, funded by Ministerio de Ciencia y Innovación, Spain. (CSD2009 - 00067 CONSOLIDER INGENIOLas terapias de rehabilitación robóticas han sido mejoradas gracias a la inclusión de la asistencia bajo demanda, adaptada a las variaciones de las necesidades del paciente, así como a la inclusión de la ayuda al terapeuta en la elección del procedimiento necesario. Esta tesis presenta una estrategia adaptativa de asistencia bajo demanda, la cual se ajusta a las necesidades específicas del paciente junto a las aportaciones del terapeuta siempre que sea necesario. El esfuerzo del comportamiento asistencial y receptivo del robot personal portátil para extremidades inferiores está dedicado a la rehabilitación de pacientes con lesión de la médula espinal (LME) incompleta. El objetivo principal es proponer y evaluar un modelo de control adaptativo en un robot portátil, ayudando al usuario y cumpliendo con sus necesidades, en ausencia o con reducción de dispositivos externos. La adaptación debe ser más interactiva para entender las necesidades del usuario y sus intenciones u órdenes volitivas. De modo similar, usando la fuerza muscular existente (en pacientes con LME incompleta) como motivación para lograr el movimiento y asistirles solo cuando sea necesario. El comportamiento adaptativo del robot portátil se propone mediante la monitorización de la interacción y movimiento del usuario. Esta adaptación conjunta se consigue modulando la rigidez en función de los parámetros de la articulación, tales como posiciones y pares de torsión. Dichos parámetros se miden del usuario de forma independiente y posteriormente se usan para actualizar el nuevo valor de la rigidez. El desempeño del algoritmo adaptativo no requiere de sensores externos, lo que favorece la simplicidad de su uso. Para una adecuada rehabilitación, efectiva y accesible para el usuario, es necesaria la compatibilidad con diversos mecanismos de asistencia tales como estimulación muscular, actividad neuronal y equilibrio corporal. Para mejorar la eficiencia del modelo de control adaptativo se ha empleado una combinación de dos enfoques de control, y para su evaluación se ha utilizado un exoesqueleto robótico H1. Los enfoques de control Jerárquico y de Tarea se han utilizado para ayudar al usuario según sea necesario, y al mismo tiempo motivarle para continuar el tratamiento. Enfoque jerárquico facilita la combinación de múltiples dispositivos para ofrecer un tratamiento eficaz mediante la categorización de la arquitectura de control en dos niveles : el control de bajo nivel y de alto nivel. Los enfoques basados en tareas involucran a la persona en cada tarea individual, y ofrecen la posibilidad de combinarlas en cualquier momento. También es necesario proporcionar un enfoque basado en la interacción con el usuario, para asegurar su participación y lograr así una terapia eficaz. Mediante esta tesis, proponemos un control adaptativo basado en tareas y en función de la interacción persona-ortesis, que se aplica en un esquema de control jerárquico. Este esquema de control se emplea en un robot portátil, con la intención de ser aplicado o acomodado a diferentes patologías, con sus capacidades de adaptación. El modelo de control adaptativo propuesto proporciona una solución integral a través de una única aplicación: adaptación dentro de la marcha y apoyo continúo a través de ejercicios de movilidad en tiempo real. El rendimiento del modelo se ha evaluado en sujetos sanos según un estudio preliminar, y posteriormente también en pacientes parapléjicos. Los resultados en sujetos sanos mostraron un cambio significativo en el patrón de los pares de interacción, elucidando un cambio en la energía y la adaptación al movimiento del usuario. En el caso de los pacientes, la adaptación mostró una mejora significativa en la actuación conjunta (rango de flexión / extensión) y el cambio en pares de interacción. El cambio activo en pares de interacción (positivo a negativo) refleja la participación activa del paciente, lo que también explica el comportamiento adaptativo

    A Human Motor Control-Inspired Control System for a Walking Hybrid Neuroprosthesis

    Get PDF
    The purpose of this research is to develop a human motor control-inspired control system for a hybrid neuroprosthesis that combines functional electrical stimulation (FES) with electric motors. This device is intended to reproduce gait for persons with spinal cord injuries (SCI). Each year approximately 17,000 people suffer from an SCI in the U.S. alone, of which about 20% of them are diagnosed with complete paraplegia. Currently, there is a lot of interest in gait restoration for subjects with paraplegia but the existing technologies use either solely FES or electric motors. These two sources of actuation both have their own limitation when used alone. Recently, there have been efforts to provide a combination of the two means of actuation, FES and motors, into gait restoration devices called hybrid neuroprostheses. In this dissertation the derivation and experimental demonstration of control systems for the hybrid neuroprosthesis are presented. Particularly, the dissertation addresses technical challenges associated with the real-time control of a FES such as nonlinear muscle dynamics, actuator dynamics, muscle fatigue, and electromechanical delays (EMD). In addition, when FES is combined with electric motors in hybrid neuroprostheses, an actuator redundancy problem is introduced. To address the actuator redundancy issue, a synergy-based control framework is derived. This synergy-based framework is inspired from the concept of muscle synergies in human motor control theory. Dynamic postural synergies are developed and used in the feedforward path of the control system for the walking hybrid neuroprosthesis. To address muscle fatigue, the stimulation levels are gradually increased based on a model-based fatigue estimate. A dynamic surface control technique, modified with a delay compensation term, is used to address the actuator dynamics and EMD in the control derivation. A Lyapunov-based stability approach is used to derive the controllers and guarantee their stability. The outcome of this research is the development of a human motor control-inspired control framework for the hybrid neuroprosthesis where both FES and electric motors can be simultaneously coordinated to reproduce gait. Multiple experiments were conducted on both able-bodied subjects and persons with SCI to validate the derived controllers
    • …
    corecore