274 research outputs found

    Designing driving and control circuits of four-phase variable reluctance stepper motor using fuzzy logic control

    Get PDF
    Precise positioning and repeatability of movement for stepper motors require designing a robust control system. To achieve that, an analytical model of a four-phase variable reluctance stepper motor is presented. A proposed open-loop driving circuit is designed to control the motion of a variable reluctance stepper motor. The driving circuit has an ability to drive the motor into two-step angles, i.e. a full step (15◦) and a half step (7.5◦). The direction of movement can be either into clockwise or counterclockwise direction. The operation of the variable reluctance stepper motor in an open-loop control circuit has demonstrated disadvantages of an oscillation and a relatively high settling time. Therefore, a closed-loop control circuit has been introduced using fuzzy logic control to overcome the oscillation problem and to obtain on a precise positioning within a reasonable settling time. The fuzzy logic control is used to improve and enhance the behaviour of the step position response based on oscillatory response and hence to reduce the overshoot significantly. The comparisons between the open- and closed-loop circuits are presented to demonstrate the disparity between both control circuits. The simulation results of the open-loop and the closed-loop circuits show that the time responses have been improved using different loads conditions. The simulation experiments are conducted and investigated using MATLAB–SIMULINK software package

    Dual closed loop controller of bus stepper motor based on back-EMF

    Get PDF
    Author name used in this publication: K. W. E. ChengAuthor name used in this publication: S. ToRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Position Control of Hybrid Stepper Motor Using Brain Emotional Controller

    Get PDF
    AbstractIn order to control the position of hybrid stepper motor and improve its performance, direct torque control strategy is adopted. The main idea of this paper is to present the implementation of an emotional controller for position control of hybrid stepper motor drive. The proposed controller is called Brain Emotional Learning Based Intelligent Controller (BELBIC). This controller is a computational model of emotional processing mechanism in the brain. The effectiveness of the proposed BELBIC controller-based hybrid stepper motor drive is verified by simulation results

    Learning position controls for hybrid step motors: from current-fed to full-order models

    Get PDF
    The experimental comparison of two different global learning position controls (namely, ‘adaptive learning’ and ‘repetitive learning’ controls) for hybrid step motors performing repetitive tasks has been recently presented in the literature. Related benefits and drawbacks have been successfully analyzed on the same robotic application. However, the design of the two aforementioned learning controls - though relying on a rigorous stability analysis - are based on a simplified current-fed model of the motor. They cannot achieve precise current tracking due to the mere presence of PI control actions in the outer current control loops. The aim of this paper is to enrich and update the results of the above comparison in the light of the latest contributions that generalize the theoretical design to the fullorder voltage-fed motor models of hybrid step motors. Learning actions are now included in the outer current control loops: they generalize the corresponding PI actions to the periodic scenario and allow to solve a control problem whose solution was seeming very difficult to be obtained

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (ipsii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant ipsii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    Controlling the half-step mode operation of the variable reluctance stepper motor by using Mamdani type of fuzzy logic controller

    Get PDF
    This paper proposed the step angle controlling of the half-step mode operation of the variable reluctance stepper motor (VRSM) by using Mamdani type of fuzzy logic controller (FLC). The MATLAB program was used to achieve the approach. The VRSM that was used in this paper has six stator poles and four rotor poles. The VRSM has three phases that represent the input variables and the step angle represents the output variable in the FLC in MATLAB. Membership functions were created for the input and output variables. The rules of the FLC were built in MATLAB. The theoretical step angles results of the VRSM were obtained by using mathematically equation while the practical results were obtained by using MATLAB. The obtained results are closer to the actual results depending on the comparison between the theoretical and practical readings. These results were written in table and were plotted in figure

    Upravljanje bezkolektorskim DC motorom s distribuiranim parametrima zasnovano na linearnom kvadratičnom regulatoru s konačnim horizontom

    Get PDF
    An optimal control theory for linear quadratic finite time horizon problem is presented and combined with distributed parameters model of the BLDC (BrushLess Direct-Current) motor. Method appropriateness for minimization of the phase current control error and energy delivered to the drive is proven. The paper focuses on finding the best weighting configuration of the objective function. Presented control strategy is performed and presented employing the numerical computations.U ovom radu je predstavljen problem optimalnog upravljanja modelom bezkolektorskog DC motora s distribuiranim parametrima zasnovan na linearnom kvadratičnom regulatoru na konačnom horizontu. Metoda je prikladna za minimizaciju regulacijske pogreške fazne struje i utrošene energije za pokretanje pogona. Fokus rada je na traženju najboljih koeficijenata funkcije cilja. Predstavljena strategija upravljanja je realizirana i validirana u simulacijama

    A Stepper Motor Design Optimization Using

    Get PDF
    In this project, the design optimization of a stepper motor is presented. In general, the area of study can be divided into motor principles and construction, design methods, and digital control experiments. Theory is taught in classroom lectures, whereas control methods are learned primarily in laboratory situations. Instruction on motor design, however, is usually limited to the study of motor construction, with practically no laboratory time spent on the actual fabrication of motors. The production process, including material processing and winding, would take up too much time and expense. There is a need to fill this void in the area of small-motor design, and develop a program using Genetic Algorithms (GAs) as an approach to achieve optimization. The aim of optimum design in this project is to minimize the volume, weight and cost of stepper motor while keeping constraint variable at the desired value. In order to achieve the optimum design, Genetic Algorithms (GAs) approach has been applied. GAs approach is selected because it is a powerful and broadly applicable stochastic search and optimization techniques that works for many problems that are very difficult to solve by conventional methods. The design optimization procedure of a stepper motor is described in this project. A C++ program has been successfully developed based on the GAs by using the GAs library. This GAs library is a C++ library that contains tools and built-in components for using GAs to minimize the fitness function. In this project, the program that has been developed is run to get the optimization result with Microsoft Visual C++. In order to obtain better results from the program, some of the parameters have to be changed. These include GA parameter that is number of generation and size of population and penalty factor. From the result, it is shown that the objective function is achieved while keeping other constraint function at desired value. This project and successful results have proved the suitability of GA for design optimization of electrical equipment. It is shown that GA can be used to solve complex problems within a short period

    Polukoračno upravljanje pozicijom linearnog prekidačko-reluktantnog motora bez senzora bazirano na stražnjim elektromagnetskim silama

    Get PDF
    This paper presents a position sensorless closed loop control of a switched reluctance linear motor. The aim of the proposed control is to damp the position of the studied motor. Indeed, the position oscillations can harm some applications requiring high position precision. Moreover, they can induce the linear switched reluctance motor to an erratic working. The proposed control solution is based on back Electromotive Forces which give information about the oscillatory behaviour of the studied motor and avoid the use of a cumbersome and expensive position linear sensor. The determination of the designed control law parameters was based on the singular perturbation theory. The efficiency of the proposed control solution was proven by simulations and experimental tests.Ovaj rad predstavlja upravljanje linearnim prekidačko-reluktantnim motorom u zatvorenoj petlji bez senzora. Cilj predloženog upravljanja je prigušiti oscilacije pozicije navedenog motora. Oscilacije pozicije mogu štetno utjecati na aplikacije koje zahtijevaju visoku preciznost pozicije. Također oscilacije mogu dovesti do nepravilnog rada motora. Predloženo rješenje upravljanja zasniva se na stražnjim elektromotornim silama koje daju informaciju o oscilatornom vladanju navedenog motora čime se izbjegava potreba za skupim i nezgrapnim linearnim senzorom pozicije. Određivanje parametara upravljanja je bazirano na singularnoj teoriji perturbacije. Efikasnost predloženog sustava upravljanja dokazana je pomoću simulacijskih i eksperimentalnih testiranja
    corecore