1,277 research outputs found

    Robust adaptive beamforming using a Bayesian steering vector error model

    Get PDF
    We propose a Bayesian approach to robust adaptive beamforming which entails considering the steering vector of interest as a random variable with some prior distribution. The latter can be tuned in a simple way to reflect how far is the actual steering vector from its presumed value. Two different priors are proposed, namely a Bingham prior distribution and a distribution that directly reveals and depends upon the angle between the true and presumed steering vector. Accordingly, a non-informative prior is assigned to the interference plus noise covariance matrix R, which can be viewed as a means to introduce diagonal loading in a Bayesian framework. The minimum mean square distance estimate of the steering vector as well as the minimum mean square error estimate of R are derived and implemented using a Gibbs sampling strategy. Numerical simulations show that the new beamformers possess a very good rate of convergence even in the presence of steering vector errors

    Quadratically Constrained Beamforming Robust Against Direction-of-Arrival Mismatch

    Get PDF
    It is well known that the performance of the minimum variance distortionless response (MVDR) beamformer is very sensitive to steering vector mismatch. Such mismatches can occur as a result of direction-of-arrival (DOA) errors, local scattering, near-far spatial signature mismatch, waveform distortion, source spreading, imperfectly calibrated arrays and distorted antenna shape. In this paper, an adaptive beamformer that is robust against the DOA mismatch is proposed. This method imposes two quadratic constraints such that the magnitude responses of two steering vectors exceed unity. Then, a diagonal loading method is used to force the magnitude responses at the arrival angles between these two steering vectors to exceed unity. Therefore, this method can always force the gains at a desired range of angles to exceed a constant level while suppressing the interferences and noise. A closed-form solution to the proposed minimization problem is introduced, and the diagonal loading factor can be computed systematically by a proposed algorithm. Numerical examples show that this method has excellent signal-to-interference-plus-noise ratio performance and a complexity comparable to the standard MVDR beamformer

    Design of a Novel Antenna Array Beamformer Using Neural Networks Trained by Modified Adaptive Dispersion Invasive Weed Optimization Based Data

    Get PDF
    A new antenna array beamformer based on neural networks (NNs) is presented. The NN training is performed by using optimized data sets extracted by a novel Invasive Weed Optimization (IWO) variant called Modified Adaptive Dispersion IWO (MADIWO). The trained NN is utilized as an adaptive beamformer that makes a uniform linear antenna array steer the main lobe towards a desired signal, place respective nulls towards several interference signals and suppress the side lobe level (SLL). Initially, the NN structure is selected by training several NNs of various structures using MADIWO based data and by making a comparison among the NNs in terms of training performance. The selected NN structure is then used to construct an adaptive beamformer, which is compared to MADIWO based and ADIWO based beamformers, regarding the SLL as well as the ability to properly steer the main lobe and the nulls. The comparison is made considering several sets of random cases with different numbers of interference signals and different power levels of additive zero-mean Gaussian noise. The comparative results exhibit the advantages of the proposed beamformer
    corecore