327 research outputs found

    Quadratically Constrained Beamforming Robust Against Direction-of-Arrival Mismatch

    Get PDF
    It is well known that the performance of the minimum variance distortionless response (MVDR) beamformer is very sensitive to steering vector mismatch. Such mismatches can occur as a result of direction-of-arrival (DOA) errors, local scattering, near-far spatial signature mismatch, waveform distortion, source spreading, imperfectly calibrated arrays and distorted antenna shape. In this paper, an adaptive beamformer that is robust against the DOA mismatch is proposed. This method imposes two quadratic constraints such that the magnitude responses of two steering vectors exceed unity. Then, a diagonal loading method is used to force the magnitude responses at the arrival angles between these two steering vectors to exceed unity. Therefore, this method can always force the gains at a desired range of angles to exceed a constant level while suppressing the interferences and noise. A closed-form solution to the proposed minimization problem is introduced, and the diagonal loading factor can be computed systematically by a proposed algorithm. Numerical examples show that this method has excellent signal-to-interference-plus-noise ratio performance and a complexity comparable to the standard MVDR beamformer

    Sparse Array DFT Beamformers for Wideband Sources

    Full text link
    Sparse arrays are popular for performance optimization while keeping the hardware and computational costs down. In this paper, we consider sparse arrays design method for wideband source operating in a wideband jamming environment. Maximizing the signal-to-interference plus noise ratio (MaxSINR) is adopted as an optimization objective for wideband beamforming. Sparse array design problem is formulated in the DFT domain to process the source as parallel narrowband sources. The problem is formulated as quadratically constraint quadratic program (QCQP) alongside the weighted mixed l1l_{1-\infty}-norm squared penalization of the beamformer weight vector. The semidefinite relaxation (SDR) of QCQP promotes sparse solutions by iteratively re-weighting beamformer based on previous iteration. It is shown that the DFT approach reduces the computational cost considerably as compared to the delay line approach, while efficiently utilizing the degrees of freedom to harness the maximum output SINR offered by the given array aperture

    Robust beamforming with magnitude response constraints using iterative second-order cone programming

    Get PDF
    The problem of robust beamforming for antenna arrays with arbitrary geometry and magnitude response constraints is one of considerable importance. Due to the presence of the non-convex magnitude response constraints, conventional convex optimization techniques cannot be applied directly. A new approach based on iteratively linearizing the non-convex constraints is then proposed to reformulate the non-convex problem to a series of convex subproblems, each of which can be optimally solved using second-order cone programming (SOCP). Moreover, in order to obtain a more robust beamformer against array imperfections, the proposed method is further extended by optimizing its worst-case performance using again SOCP. Different from some conventional methods which are restricted to linear arrays, the proposed method is applicable to arbitrary array geometries since the weight vector, rather than its autocorrelation sequence, is used as the variable. Simulation results show that the performance of the proposed method is comparable to the optimal solution previously proposed for uniform linear arrays, and it also gives satisfactory results under different array specifications and geometries tested. © 2006 IEEE.published_or_final_versio
    corecore