31 research outputs found

    Nonlinear control of a seven degrees-of-freedom exoskeleton robot arm

    Get PDF
    Advances in the field of robotics have allowed increasingly integrating robotic devices for rehabilitation of physical disabilities. This research work is encompassed into the field of rehabilitation robotics; it presents the development of the robot ETS-MARSE, a seven degrees-of-freedom exoskeleton designed to be worn in the human arm. The developments include the study and implementation of a relatively novel nonlinear control approach, as well as different rehabilitation schemes. One of the characteristics of a rehabilitation robot is that it deals with a wide number of patients that have different biomechanical and physiological conditions. The implementation of the nonlinear control technique known as Virtual Decomposition Control addresses this issue with its internal parameters’ adaptation that presents a robust behavior to different characteristics of the robot users. Besides, this technique simplifies the complexity of high degree-of-freedom robots by its innovative sub-systems decomposition. All of above, while ensuring the system asymptotic stability and excellent trajectory tracking. Between the different rehabilitation schemes, we can mention: passive, active-assistive and active rehabilitation. The first one follows predefined trajectories and relies on the efficiency of the controller. The two other schemes require understanding the user’s intention of movement and take an action in order to guide, restrain, correct or follow it. For this purpose, we present an approach that utilizes a force sensor as the human-robot interface in order to transform, via an admittance function, the forces that the user exert to the robot end-effector (handle), and execute active-assisted or active rehabilitation. Finally among the main developments of this work, an approach is presented in which the need of a force sensor to perform some active rehabilitation tasks is removed. By means of a nonlinear observer, the interaction forces are estimated and the user’s intention of movement followed. Experimental results show the effectiveness of all the proposed approaches. All the tests involving humans were tested with healthy subjects. Trajectory tracking of the robot is executed in joint space; some trajectories are given in Cartesian space and transformed to joint space by means of the pseudoinverse of the Jacobian technique. However this option is limited; a mandatory next step to improve many functionalities of the robot is to solve its inverse kinematics. Between other progresses that are in development, is an approach to process electromyographic signals in order to obtain information from the robot’s users. First results on this methodology are presented. Teleoperation and haptic capabilities are also in the initial stage of development

    Progress and Prospects of the Human-Robot Collaboration

    Get PDF
    International audienceRecent technological advances in hardware designof the robotic platforms enabled the implementationof various control modalities for improved interactions withhumans and unstructured environments. An important applicationarea for the integration of robots with such advancedinteraction capabilities is human-robot collaboration. Thisaspect represents high socio-economic impacts and maintainsthe sense of purpose of the involved people, as the robotsdo not completely replace the humans from the workprocess. The research community’s recent surge of interestin this area has been devoted to the implementation of variousmethodologies to achieve intuitive and seamless humanrobot-environment interactions by incorporating the collaborativepartners’ superior capabilities, e.g. human’s cognitiveand robot’s physical power generation capacity. In fact,the main purpose of this paper is to review the state-of-thearton intermediate human-robot interfaces (bi-directional),robot control modalities, system stability, benchmarking andrelevant use cases, and to extend views on the required futuredevelopments in the realm of human-robot collaboration

    Hybrid walking therapy with fatigue management for spinal cord injured individuals

    Get PDF
    In paraplegic individuals with upper motor neuron lesions the descending path for signals from central nervous system to the muscles are lost or diminished. Motor neuroprosthesis based on electrical stimulation can be applied to induce restoration of motor function in paraplegic patients. Furthermore, electrical stimulation of such motor neuroprosthesis can be more efficiently managed and delivered if combined with powered exoskeletons that compensate the limited force in the stimulated muscles and bring additional support to the human body. Such hybrid overground gait therapy is likely to be more efficient to retrain the spinal cord in incomplete injuries than conventional, robotic or neuroprosthetic approaches. However, the control of bilateral joints is difficult due to the complexity, non-linearity and time-variance of the system involved. Also, the effects of muscle fatigue and spasticity in the stimulated muscles complicate the control task. Furthermore, a compliant joint actuation is required to allow for a cooperative control approach that is compatible with the assist-as-needed rehabilitation paradigm. These were direct motivations for this research. The overall aim was to generate the necessary knowledge to design a novel hybrid walking therapy with fatigue management for incomplete spinal cord injured subjects. Research activities were conducted towards the establishment of the required methods and (hardware and software) systems that required to proof the concept with a pilot clinical evaluation. Speciffically, a compressive analysis of the state of the art on hybrid exoskeletons revealed several challenges which were tackled by this dissertation. Firstly, assist-as-needed was implemented over the basis of a compliant control of the robotic exoskeleton and a closed-loop control of the neuroprosthesis. Both controllers are integrated within a hybrid-cooperative strategy that is able to balance the assistance of the robotic exoskeleton regarding muscle performance. This approach is supported on the monitoring of the leg-exoskeleton physical interaction. Thus the fatigue caused by neuromuscular stimulation was also subject of speciffic research. Experimental studies were conducted with paraplegic patients towards the establishment of an objective criteria for muscle fatigue estimation and management. The results of these studies were integrated in the hybrid-cooperative controller in order to detect and manage muscle fatigue while providing walking therapy. Secondly closed-loop control of the neuroprosthesis was addressed in this dissertation. The proposed control approach allowed to tailor the stimulation pattern regarding the speciffic residual motor function of the lower limb of the patient. In order to uncouple the closed-loop control from muscle performance monitoring, the hybrid-cooperative control approach implemented a sequential switch between closed-loop and open-loop control of the neuroprosthesis. Lastly, a comprehensive clinical evaluation protocol allowed to assess the impact of the hybrid walking therapy on the gait function of a sample of paraplegic patients. Results demonstrate that: 1) the hybrid controller adapts to patient residual function during walking, 2) the therapy is tolerated by patients, and 3) the walking function of patients was improved after participating in the study. In conclusion, the hybrid walking therapy holds potential for rehabilitate walking in motor incomplete paraplegic patients, guaranteeing further research on this topic. This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovación, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010). Within these research projects, cutting-edge research is conducted in the eld of hybrid actuation and control for rehabilitation of motor disorders. This dissertation constitutes proof-of concept of the hybrid walking therapy for paraplegic individuals for these projects. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------En individuos parapléjicos con lesiones de la motoneurona superior, la conexión descendente para la transmisión de las señales del sistema nervioso central a los músculos se ve perdida o disminuida. Las neuroprótesis motoras basadas en la estimulación eléctrica pueden ser aplicadas para inducir la restauración de la función motora en pacientes con paraplejia. Además, la estimulación eléctrica de tales neuroprótesis motoras se puede gestionar y aplicar de manera más eficiente mediante la combinación con exoesqueletos robóticos que compensen la generación limitada de fuerza de los músculos estimulados, y proporcionen soporte adicional para el cuerpo. Dicha terapia de marcha ambulatoria puede ser probablemente más eficaz para la recuperación de las funciones de la médula espinal en lesiones incompletas que las terapias convencionales, robóticas o neuroprotesicas. Sin embargo, el control bilateral de las articulaciones es difícil debido a la complejidad, no-linealidad y la variación con el tiempo de las características del sistema en cuestión. Además, la fatiga muscular y la espasticidad de los músculos estimulados complican la tarea de control. Por otra parte, se requiere una actuación robótica modulable para permitir un enfoque de control cooperativo compatible con el paradigma de rehabilitación de asistencia bajo demanda. Todo lo anterior constituyó las motivaciones directas para esta investigación. El objetivo general fue generar el conocimiento necesario para diseñar un nuevo tratamiento híbrido de rehabilitación marcha con gestión de la fatiga para lesionados medulares incompletos. Se llevaron a cabo actividades de investigación para el establecimiento de los métodos necesarios y los sistemas (hardware y software) requeridos para probar el concepto mediante una evaluación clínica piloto. Específicamente, un análisis del estado de la técnica sobre exoesqueletos híbridos reveló varios retos que fueron abordados en esta tesis. En primer lugar, el paradigma de asistencia bajo demanda se implementó sobre la base de un control adaptable del exoesqueleto robótico y un control en lazo cerrado de la neuroprótesis. Ambos controladores están integrados dentro de una estrategia híbrida cooperativa que es capaz de equilibrar la asistencia del exoesqueleto robótico en relación con el rendimiento muscular. Este enfoque se soporta sobre la monitorización de la interacción física entre la pierna y el exoesqueleto. Por tanto, la fatiga causada por la estimulación neuromuscular también fue objeto de una investigación específica. Se realizaron estudios experimentales con pacientes parapléjicos para el establecimiento de un criterio objetivo para la detección y la gestión de la fatiga muscular. Los resultados de estos estudios fueron integrados en el controlador híbrido-cooperativo con el fin de detectar y gestionar la fatiga muscular mientras se realiza la terapia híbrida de rehabilitación de la marcha. En segundo lugar, el control en lazo cerrado de la neuroprótesis fue abordado en esta tesis. El método de control propuesto permite adaptar el patrón de estimulación en relación con la funcionalidad residual específica de la extremidad inferior del paciente. Sin embargo, con el n de desacoplar el control en lazo cerrado de la monitorización del rendimiento muscular, el enfoque de control híbrido-cooperativo incorpora una conmutación secuencial entre el control en lazo cerrado y en lazo abierto de la neuropr otesis. Por último, un protocolo de evaluación clínica global permitido evaluar el impacto de la terapia híbrida de la marcha en la función de la marcha de una muestra de pacientes parapléjicos. Los resultados demuestran que: 1) el controlador híbrido se adapta a la función residual del paciente durante la marcha, 2) la terapia es tolerada por los pacientes, y 3) la funci on de marcha del paciente mejora despu es de participar en el estudio. En conclusión, la terapia de híbrida de la marcha alberga un potencial para la rehabilitación de la marcha en pacientes parapléjicos incompletos motor, garantizando realizar investigación más profunda sobre este tema. Esta tesis se enmarca dentro de los dos proyectos de investigación: REHABOT (Ministerio de Ciencia e Innovación, referencia DPI2008-06772-C03-02) y HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, referencia CSD2009-00067 CONSOLIDER INGENIO 2010). Dentro de estos proyectos se lleva a cabo investigación de vanguardia en el campo de la actuación y el control híbrido de la combinación robot-neuroprótesis para la rehabilitación de trastornos motores. Esta tesis constituye la prueba de concepto de la terapia de híbrida de la marcha para individuos parapléjicos en estos proyectos.This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovación, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010

    Model-based Control of Upper Extremity Human-Robot Rehabilitation Systems

    Get PDF
    Stroke rehabilitation technologies have focused on reducing treatment cost while improving effectiveness. Rehabilitation robots are generally developed for home and clinical usage to: 1) deliver repetitive and stimulating practice to post-stroke patients, 2) minimize therapist interventions, and 3) increase the number of patients per therapist, thereby decreasing the associated cost. The control of rehabilitation robots is often limited to black- or gray-box approaches; thus, safety issues regarding the human-robot interaction are not easily considered. Furthermore, despite numerous studies of control strategies for rehabilitation, there are very few rehabilitation robots in which the tasks are implemented using optimal control theory. Optimal controllers using physics-based models have the potential to overcome these issues. This thesis presents advanced impedance- and model-based controllers for an end-effector-based upper extremity stroke rehabilitation robot. The final goal is to implement a biomechanically-plausible real-time nonlinear model predictive control for the studied rehabilitation system. The real-time term indicates that the controller computations finish within the sampling frequency time. This control structure, along with advanced impedance-based controllers, can be applied to any human-environment interactions. This makes them promising tools for different types of assistive devices, exoskeletons, active prostheses and orthoses, and exercise equipment. In this thesis, a high-fidelity biomechatronic model of the human-robot interaction is developed. The rehabilitation robot is a 2 degree-of-freedom parallelogram linkage with joint friction and backlash, and nonlinear dynamics. The mechatronic model of the robot with relatively accurate identified dynamic parameters is used in the human-robot interaction plant. Different musculoskeletal upper extremity, biomechanic, models are used to model human body motions while interacting with the rehabilitation robot model. Human-robot interaction models are recruited for model-in-loop simulations, thereby tuning the developed controllers in a structured resolution. The interaction models are optimized for real-time simulations. Thus, they are also used within the model-based control structures to provide biofeedback during a rehabilitation therapy. In robotic rehabilitation, because of physical interaction of the patient with a mechanical device, safety is a fundamental element in the design of a controller. Thus, impedance-based assistance is commonly used for robotic rehabilitation. One of our objectives is to achieve a reliable and real-time implementable controller. In our definition, a reliable controller is capable of handling variable exercises and admittance interactions. The controller should reduce therapist intervention and improve the quality of the rehabilitation. Hence, we develop advanced impedance-based assistance controllers for the rehabilitation robot. Overall, two types of impedance-based (i.e., hybrid force-impedance and optimal impedance) controllers are developed and tuned using model-in-loop simulations. Their performances are assessed using simulations and/or experiments. Furthermore, their drawbacks are discussed and possible methods for their improvements are proposed. In contrast to black/gray-box controllers, a physics-based model can leverage the inherent dynamics of the system and facilitate implementation of special control techniques, which can optimize a specific performance criterion while meeting stringent system constraints. Thus, we present model-based controllers for the upper extremity rehabilitation robot using our developed musculoskeletal models. Two types of model-based controllers (i.e., nonlinear model predictive control using external 3-dimensional musculoskeletal model or internal 2-dimensional musculoskeletal model) are proposed. Their performances are evaluated in simulations and/or experiments. The biomechanically-plausible nonlinear model predictive control using internal 2-dimensional musculoskeletal model predicts muscular activities of the human subject and provides optimal assistance in real-time experiments, thereby conforming to our final goal for this project
    corecore