58 research outputs found

    Regions of attraction and ultimate boundedness for linear quadratic regulators with nonlinearities

    Get PDF
    The closed-loop stability of multivariable linear time-invariant systems controlled by optimal linear quadratic (LQ) regulators is investigated for the case when the feedback loops have nonlinearities N(sigma) that violate the standard stability condition, sigma N(sigma) or = 0.5 sigma(2). The violations of the condition are assumed to occur either (1) for values of sigma away from the origin (sigma = 0) or (2) for values of sigma in a neighborhood of the origin. It is proved that there exists a region of attraction for case (1) and a region of ultimate boundedness for case (2), and estimates are obtained for these regions. The results provide methods for selecting the performance function parameters to design LQ regulators with better tolerance to nonlinearities. The results are demonstrated by application to the problem of attitude and vibration control of a large, flexible space antenna in the presence of actuator nonlinearities

    On Computing the Worst-case H∞ Performance of Lur'e Systems with Uncertain Time-invariant Delays

    Get PDF
    This paper presents a worst-case H∞ performance analysis for Lur'e systems with time-invariant delays. The sucient condition to guarantee an upper bound of worst-case performance is developed based on the delay-partitioning Lyapunov-Krasovskii functional containing the integral of sector-bounded nonlinearities. Using Jensen inequality and S-procedure, the delay-dependent criterion is given in terms of linear matrix inequalities. In addition, we extend the criterion to compute the worst-case performance for Lur'e systems subject to norm-bounded uncertainties by using a matrix eliminating lemma. Numerical results show that our criterion provide the least upper bound on the worst-case H∞ performance comparing to the criteria derived based on existing techniques

    Robust controls with structured perturbations

    Get PDF
    This final report summarizes the recent results obtained by the principal investigator and his coworkers on the robust stability and control of systems containing parametric uncertainty. The starting point is a generalization of Kharitonov's theorem obtained in 1989, and its generalization to the multilinear case, the singling out of extremal stability subsets, and other ramifications now constitutes an extensive and coherent theory of robust parametric stability that is summarized in the results contained here

    STABILIZATION BY ADAPTIVE FEEDBACK CONTROL FOR POSITIVE DIFFERENCE EQUATIONS WITH APPLICATIONS IN PEST MANAGEMENT

    Get PDF
    An adaptive feedback control scheme is proposed for stabilizing a class of forced nonlinear positive difference equations. The adaptive scheme is based on so-called high-gain adaptive controllers and contains substantial robustness with respect to model uncertainty as well as with respect to persistent forcing signals, including measurement errors. Our results take advantage of the underlying positive systems structure and ideas from input-to-state stability from nonlinear control theory. Our motivating application is to pest or weed control, and in this context the present work substantially strengthens previous work by the authors. The theory is illustrated with examples

    Stability analysis of a phase plane control system

    Get PDF
    Many aerospace attitude control systems utilize a phase plane control scheme which includes nonlinear elements such as dead zone and ideal relay. Nonlinear control techniques such as pulse width modulation (PWM), describing functions, and absolute stability are implemented to determine stability. To evaluate phase plane control robustness, stability margin prediction methods must be developed. While PWM has been used to predict stability margins, in this research, describing functions and absolute stability are extended to predict stability margins. Time domain simulations demonstrate all techniques yield conservative gain margin results. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Two filters are designed in this thesis; one meets PWM stability margin specifications and the other holds for Popov stability

    Robust control design with real parameter uncertainty using absolute stability theory

    Get PDF
    The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds

    Auto-generation of passive scalable macromodels for microwave components using scattered sequential sampling

    Get PDF
    This paper presents a method for automatic construction of stable and passive scalable macromodels for parameterized frequency responses. The method requires very little prior knowledge to build the scalable macromodels thereby considerably reducing the burden on the designers. The proposed method uses an efficient scattered sequential sampling strategy with as few expensive simulations as possible to generate accurate macromodels for the system using state-of-the-art scalable macromodeling methods. The scalable macromodels can be used as a replacement model for the actual simulator in overall design processes. Pertinent numerical results validate the proposed sequential sampling strategy

    Control techniques for chaotic dynamical systems

    Get PDF

    Stability analysis and synthesis of systems subject to norm bounded, bounded rate uncertainties

    Get PDF
    summary:In this paper we consider a linear system subject to norm bounded, bounded rate time-varying uncertainties. Necessary and sufficient conditions for quadratic stability and stabilizability of such class of uncertain systems are well known in the literature. Quadratic stability guarantees exponential stability in presence of arbitrary time-varying uncertainties; therefore it becomes a conservative approach when, as it is the case considered in this paper, the uncertainties are slowly-varying in time. The first contribution of this paper is a sufficient condition for the exponential stability of the zero input system; such condition, which takes into account the bound on the rate of variation of the uncertainties, results to be a less conservative analysis tool than the quadratic stability approach. Then the analysis result is used to provide an algorithm for the synthesis of a controller guaranteeing closed loop stability of the uncertain forced system
    corecore