2,316 research outputs found

    Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method

    Get PDF
    This paper presents the real time implementation of socially acceptable collision avoidance using the elastic band method for low speed autonomous shuttles operating in high pedestrian density environments. The modeling and validation of the research autonomous vehicle used in the experimental implementation is presented first, followed by the details of the Hardware-In-the-Loop connected and autonomous vehicle simulator used. The socially acceptable collision avoidance algorithm is formulated using the elastic band method as an online, local path modification algorithm. Parameter space based robust feedback plus feedforward steering controller design is used. Model-in-the-loop, Hardware-In-the-Loop and road testing in a proving ground are used to demonstrate the effectiveness of the real time implementation of the elastic band based socially acceptable collision avoidance method of this paper

    Hardware in the Loop Simulation of Active Front Wheel Steering control for yaw disturbance rejection

    Get PDF
    This paper introduces an Active Front Wheel Steering (AFWS) control for the purpose of reducing unwanted yaw motion. Side wind forces are considered to be the sources of yaw disturbance in this study. The proposed control strategy for the AFWS is a lateral directional control with yaw rate feedback. The AFWS controller was implemented on Hardware in the Loop Simulation (HiLS) using an AFWS test rig. From the simulation and experimental results, AFWS control is able to perform the task of yaw disturbance attenuation by providing additional steering correction for maintaining the original direction of the vehicle. Keywords: active front wheel steering; side wind force; yaw cancellation; HiLS; vehicle safety

    The Limited Integrator Model Regulator And its Use in Vehicle Steering Control

    Full text link
    Unexpected yaw disturbances like braking on unilaterally icy road, side wind forces and tire rupture are very difficult to handle by the driver of a road vehicle, due to his/her large panic reaction period ranging between 0.5 to 2 seconds. Automatic driver assist systems provide counteracting yaw moments during this driver panic reaction period to maintain the stability of the yaw dynamics of the vehicle. An active steering based driver assist system that uses the model regulator control architecture is introduced and used here for yaw dynamics stabilization in such situations. The model regulator which is a special form of a two degree of freedom control architecture is introduced and explained in detail in a tutorial fashion whereby its integral action capability, among others, is also shown. An auxiliary steering actuation system is assumed and a limited integrator version of the model regulator based steering controller is developed in order not to saturate the auxiliary steering actuator. This low frequency limited integrator implementation also allows the driver to take care of low frequency steering and disturbance rejection tasks. Linear simulation results are used to demonstrate the effectiveness of the proposed method

    Hardware-in-the-Loop and Road Testing of RLVW and GLOSA Connected Vehicle Applications

    Full text link
    This paper presents an evaluation of two different Vehicle to Infrastructure (V2I) applications, namely Red Light Violation Warning (RLVW) and Green Light Optimized Speed Advisory (GLOSA). The evaluation method is to first develop and use Hardware-in-the-Loop (HIL) simulator testing, followed by extension of the HIL testing to road testing using an experimental connected vehicle. The HIL simulator used in the testing is a state-of-the-art simulator that consists of the same hardware like the road side unit and traffic cabinet as is used in real intersections and allows testing of numerous different traffic and intersection geometry and timing scenarios realistically. First, the RLVW V2I algorithm is tested in the HIL simulator and then implemented in an On-Board-Unit (OBU) in our experimental vehicle and tested at real world intersections. This same approach of HIL testing followed by testing in real intersections using our experimental vehicle is later extended to the GLOSA application. The GLOSA application that is tested in this paper has both an optimal speed advisory for passing at the green light and also includes a red light violation warning system. The paper presents the HIL and experimental vehicle evaluation systems, information about RLVW and GLOSA and HIL simulation and road testing results and their interpretations

    A Real-time Nonlinear Model Predictive Controller for Yaw Motion Optimization of Distributed Drive Electric Vehicles

    Get PDF
    This paper proposes a real-time nonlinear model predictive control (NMPC) strategy for direct yaw moment control (DYC) of distributed drive electric vehicles (DDEVs). The NMPC strategy is based on a control-oriented model built by integrating a single track vehicle model with the Magic Formula (MF) tire model. To mitigate the NMPC computational cost, the continuation/generalized minimal residual (C/GMRES) algorithm is employed and modified for real-time optimization. Since the traditional C/GMRES algorithm cannot directly solve the inequality constraint problem, the external penalty method is introduced to transform inequality constraints into an equivalently unconstrained optimization problem. Based on the Pontryagin’s minimum principle (PMP), the existence and uniqueness for solution of the proposed C/GMRES algorithm are proven. Additionally, to achieve fast initialization in C/GMRES algorithm, the varying predictive duration is adopted so that the analytic expressions of optimally initial solutions in C/GMRES algorithm can be derived and gained. A Karush-Kuhn-Tucker (KKT) condition based control allocation method distributes the desired traction and yaw moment among four independent motors. Numerical simulations are carried out by combining CarSim and Matlab/Simulink to evaluate the effectiveness of the proposed strategy. Results demonstrate that the real-time NMPC strategy can achieve superior vehicle stability performance, guarantee the given safety constraints, and significantly reduce the computational efforts

    A new model-free design for vehicle control and its validation through an advanced simulation platform

    Full text link
    A new model-free setting and the corresponding "intelligent" P and PD controllers are employed for the longitudinal and lateral motions of a vehicle. This new approach has been developed and used in order to ensure simultaneously a best profile tracking for the longitudinal and lateral behaviors. The longitudinal speed and the derivative of the lateral deviation, on one hand, the driving/braking torque and the steering angle, on the other hand, are respectively the output and the input variables. Let us emphasize that a "good" mathematical modeling, which is quite difficult, if not impossible to obtain, is not needed for such a design. An important part of this publication is focused on the presentation of simulation results with actual and virtual data. The actual data, used in Matlab as reference trajectories, have been obtained from a properly instrumented car (Peugeot 406). Other virtual sets of data have been generated through the interconnected platform SiVIC/RTMaps. It is a dedicated virtual simulation platform for prototyping and validation of advanced driving assistance systems. Keywords- Longitudinal and lateral vehicle control, model-free control, intelligent P controller (i-P controller), algebraic estimation, ADAS (Advanced Driving Assistance Systems).Comment: in 14th European Control Conference, Jul 2015, Linz, Austria. 201

    Discrete-time Robust PD Controlled System with DOB/CDOB Compensation for High Speed Autonomous Vehicle Path Following

    Full text link
    Autonomous vehicle path following performance is one of significant consideration. This paper presents discrete time design of robust PD controlled system with disturbance observer (DOB) and communication disturbance observer (CDOB) compensation to enhance autonomous vehicle path following performance. Although always implemented on digital devices, DOB and CDOB structure are usually designed in continuous time in the literature and also in our previous work. However, it requires high sampling rate for continuous-time design block diagram to automatically convert to corresponding discrete-time controller using rapid controller prototyping systems. In this paper, direct discrete time design is carried out. Digital PD feedback controller is designed based on the nominal plant using the proposed parameter space approach. Zero order hold method is applied to discretize the nominal plant, DOB and CDOB structure in continuous domain. Discrete time DOB is embedded into the steering to path following error loop for model regulation in the presence of uncertainty in vehicle parameters such as vehicle mass, vehicle speed and road-tire friction coefficient and rejecting external disturbance like crosswind force. On the other hand, time delay from CAN bus based sensor and actuator command interfaces results in degradation of system performance since large negative phase angles are added to the plant frequency response. Discrete time CDOB compensated control system can be used for time delay compensation where the accurate knowledge of delay time value is not necessary. A validated model of our lab Ford Fusion hybrid automated driving research vehicle is used for the simulation analysis while the vehicle is driving at high speed. Simulation results successfully demonstrate the improvement of autonomous vehicle path following performance with the proposed discrete time DOB and CDOB structure

    Dynamic Speed Harmonization

    Full text link
    In the last decade, the accelerated advancements in manufacturing techniques and material science enabled the automotive industry to manufacture commercial vehicles at more affordable rates. This, however, brought about roadways having to accommodate an ever-increasing number of vehicles every day. However, some roadways, during specific hours of the day, had already been on the brink of reaching their capacity to withstand the number of vehicles travelling on them. Hence, overcrowded roadways create slow traffic, and sometimes, bottlenecks. In this paper, a Dynamic Speed Harmonization (DSH) algorithm that regulates the speed of a vehicle to prevent it from being affected by bottlenecks has been presented. First, co-simulations were run between MATLAB Simulink and CarSim to test different deceleration profiles. Then, Hardware-in-the-Loop (HIL) simulations were run with a Road Side Unit (RSU), which emulated a roadside detector that spotted bottlenecks and sent information to the Connected Vehicle about the position of the queue and the average speed of the vehicles at the queue. The DSH algorithm was also tested on a track to compare the performance of the different deceleration profiles in terms of ride comfort.Comment: 7 pages, 5 figure
    • …
    corecore