632 research outputs found

    Dissection of Affective Catecholamine Circuits Using Traditional and Wireless Optogenetics

    Get PDF
    Parsing the complexity of the mammalian brain has challenged neuroscientists for thousands of years. In the early 21st century, advances in materials science and neuroscience have enabled unprecedented control of neural circuitry. In particular, cell-type selective manipulations, such as those with optogenetics and chemogenetics, routinely provide answers to previously intractable neurobiological questions in the intact, behaving animal. In this two-part dissertation, I first introduce new minimally invasive, wireless technology to perturb neural activity in the ventral tegmental area dopaminergic system of freely moving animals. I report a series of novel devices for studying and perturbing intact neural systems through optogenetics, microfluidic pharmacology, and electrophysiology. Unlike optogenetic approaches that rely on rigid, glass fiber optics coupled to external light sources, these novel devices utilize flexible substrates to carry microscale, inorganic light emitting diodes (μ-ILEDs), multimodal sensors, and/or microfluidic channels into the brain. Each class of device can be wirelessly controlled, enabling studies in freely behaving mice and achieving previously untenable control of catecholamine neural circuitry. In the second part of this dissertation, I apply existing cell-type selective approaches to dissect the role of the locus coeruleus noradrenergic (LC-NE) system in anxiety-like and aversive behaviors. The LC-NE system is one of the first systems engaged following a stressful event. While LC-NE neurons are known to be activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated until now. I demonstrate that increased tonic activity of LC-NE neurons is both necessary and sufficient for stress-induced anxiety; a behavior which is driven by LC projections to the basolateral amygdala. Furthermore, this activity and behavior is elicited by corticotropin releasing hormone-containing afferent inputs into the LC from the central amygdala. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders. Together these two objectives provide a rich technological toolbox for neuroscientists and yield important knowledge of how small catecholamine structures with widespread forebrain innervation can selectively mediate higher order behaviors

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    Flexible, stretchable, and transient electronics for integration with the human body

    Get PDF
    Technologies capable of establishing intimate, long-lived interfaces to the human body have broad utility in continuous measurement of physiological status, with the potential to significantly lower tissue injury and irritation after implants. The development of such soft, biocompatible platforms and integrating them into a biotissue-interfaced system requires suitable choice of materials and engineered structures. Specific directions include overall miniaturization (e.g., Si nanomembrane) or composite material structure (e.g., carbon black doped elastomer) that provide effective mechanics to match those of biological tissues. This dissertation presents combined experimental and theoretical investigations of such functional systems that offer flexibility and stretchability, while maintaining operational performance and mechanical robustness. The dissertation begins with a fundamental study of responsive monocrystalline silicon nanomembrane as a flexible electromechanical sensor element. Subsequent chapters highlight integration with active components for wireless addressing, multiplexing, and local amplification, with multimodal operation in a thin, soft, skin-like platform. The resulting biointegrated system enables (1) sensitive health monitoring system, (2) multifunctional tactile sensor, (3) high-density neural interfaces, and (4) physically transient, implantable electronics, all with the capability of stable operation for long timeframes

    Improving the mechanistic study of neuromuscular diseases through the development of a fully wireless and implantable recording device

    Get PDF
    Neuromuscular diseases manifest by a handful of known phenotypes affecting the peripheral nerves, skeletal muscle fibers, and neuromuscular junction. Common signs of these diseases include demyelination, myasthenia, atrophy, and aberrant muscle activity—all of which may be tracked over time using one or more electrophysiological markers. Mice, which are the predominant mammalian model for most human diseases, have been used to study congenital neuromuscular diseases for decades. However, our understanding of the mechanisms underlying these pathologies is still incomplete. This is in part due to the lack of instrumentation available to easily collect longitudinal, in vivo electrophysiological activity from mice. There remains a need for a fully wireless, batteryless, and implantable recording system that can be adapted for a variety of electrophysiological measurements and also enable long-term, continuous data collection in very small animals. To meet this need a miniature, chronically implantable device has been developed that is capable of wirelessly coupling energy from electromagnetic fields while implanted within a body. This device can both record and trigger bioelectric events and may be chronically implanted in rodents as small as mice. This grants investigators the ability to continuously observe electrophysiological changes corresponding to disease progression in a single, freely behaving, untethered animal. The fully wireless closed-loop system is an adaptable solution for a range of long-term mechanistic and diagnostic studies in rodent disease models. Its high level of functionality, adjustable parameters, accessible building blocks, reprogrammable firmware, and modular electrode interface offer flexibility that is distinctive among fully implantable recording or stimulating devices. The key significance of this work is that it has generated novel instrumentation in the form of a fully implantable bioelectric recording device having a much higher level of functionality than any other fully wireless system available for mouse work. This has incidentally led to contributions in the areas of wireless power transfer and neural interfaces for upper-limb prosthesis control. Herein the solution space for wireless power transfer is examined including a close inspection of far-field power transfer to implanted bioelectric sensors. Methods of design and characterization for the iterative development of the device are detailed. Furthermore, its performance and utility in remote bioelectric sensing applications is demonstrated with humans, rats, healthy mice, and mouse models for degenerative neuromuscular and motoneuron diseases

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Coupled resonator based wireless power transfer for bioelectronics

    Get PDF
    Implantable and wearable bioelectronics provide the ability to monitor and modulate physiological processes. They represent a promising set of technologies that can provide new treatment for patients or new tools for scientific discovery, such as in long-term studies involving small animals. As these technologies advance, two trends are clear, miniaturization and increased sophistication i.e. multiple channels, wireless bi-directional communication, and responsiveness (closed-loop devices). One primary challenge in realizing miniaturized and sophisticated bioelectronics is powering. Integration and development of wireless power transfer (WPT) technology, however, can overcome this challenge. In this dissertation, I propose the use of coupled resonator WPT for bioelectronics and present a new generalized analysis and optimization methodology, derived from complex microwave bandpass filter synthesis, for maximizing and controlling coupled resonator based WPT performance. This newly developed set of analysis and optimization methods enables system miniaturization while simultaneously achieving the necessary performance to safely power sophisticated bioelectronics. As an application example, a novel coil to coil based coupled resonator arrangement to wirelessly operate eight surface electromyography sensing devices wrapped circumferentially around an able-bodied arm is developed and demonstrated. In addition to standard coil to coil based systems, this dissertation also presents a new form of coupled resonator WPT system built of a large hollow metallic cavity resonator. By leveraging the analysis and optimization methods developed here, I present a new cavity resonator WPT system for long-term experiments involving small rodents for the first time. The cavity resonator based WPT arena exhibits a volume of 60.96 x 60.96 x 30.0 cm3. In comparison to prior state of the art, this cavity resonator system enables nearly continuous wireless operation of a miniature sophisticated device implanted in a freely behaving rodent within the largest space. Finally, I present preliminary work, providing the foundation for future studies, to demonstrate the feasibility of treating segments of the human body as a dielectric waveguide resonator. This creates another form of a coupled resonator system. Preliminary experiments demonstrated optimized coupled resonator wireless energy transfer into human tissue. The WPT performance achieved to an ultra-miniature sized receive coil (2 mm diameter) is presented. Indeed, optimized coupled resonator systems, broadened to include cavity resonator structures and human formed dielectric resonators, can enable the effective use of coupled resonator based WPT technology to power miniaturized and sophisticated bioelectronics

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed
    corecore