645 research outputs found

    Optimal Radiometric Calibration for Camera-Display Communication

    Full text link
    We present a novel method for communicating between a camera and display by embedding and recovering hidden and dynamic information within a displayed image. A handheld camera pointed at the display can receive not only the display image, but also the underlying message. These active scenes are fundamentally different from traditional passive scenes like QR codes because image formation is based on display emittance, not surface reflectance. Detecting and decoding the message requires careful photometric modeling for computational message recovery. Unlike standard watermarking and steganography methods that lie outside the domain of computer vision, our message recovery algorithm uses illumination to optically communicate hidden messages in real world scenes. The key innovation of our approach is an algorithm that performs simultaneous radiometric calibration and message recovery in one convex optimization problem. By modeling the photometry of the system using a camera-display transfer function (CDTF), we derive a physics-based kernel function for support vector machine classification. We demonstrate that our method of optimal online radiometric calibration (OORC) leads to an efficient and robust algorithm for computational messaging between nine commercial cameras and displays.Comment: 10 pages, Submitted to CVPR 201

    Vision Based Extraction of Nutrition Information from Skewed Nutrition Labels

    Get PDF
    An important component of a healthy diet is the comprehension and retention of nutritional information and understanding of how different food items and nutritional constituents affect our bodies. In the U.S. and many other countries, nutritional information is primarily conveyed to consumers through nutrition labels (NLs) which can be found in all packaged food products. However, sometimes it becomes really challenging to utilize all this information available in these NLs even for consumers who are health conscious as they might not be familiar with nutritional terms or find it difficult to integrate nutritional data collection into their daily activities due to lack of time, motivation, or training. So it is essential to automate this data collection and interpretation process by integrating Computer Vision based algorithms to extract nutritional information from NLs because it improves the user’s ability to engage in continuous nutritional data collection and analysis. To make nutritional data collection more manageable and enjoyable for the users, we present a Proactive NUTrition Management System (PNUTS). PNUTS seeks to shift current research and clinical practices in nutrition management toward persuasion, automated nutritional information processing, and context-sensitive nutrition decision support. PNUTS consists of two modules, firstly a barcode scanning module which runs on smart phones and is capable of vision-based localization of One Dimensional (1D) Universal Product Code (UPC) and International Article Number (EAN) barcodes with relaxed pitch, roll, and yaw camera alignment constraints. The algorithm localizes barcodes in images by computing Dominant Orientations of Gradients (DOGs) of image segments and grouping smaller segments with similar DOGs into larger connected components. Connected components that pass given morphological criteria are marked as potential barcodes. The algorithm is implemented in a distributed, cloud-based system. The system’s front end is a smartphone application that runs on Android smartphones with Android 4.2 or higher. The system’s back end is deployed on a five node Linux cluster where images are processed. The algorithm was evaluated on a corpus of 7,545 images extracted from 506 videos of bags, bottles, boxes, and cans in a supermarket. The DOG algorithm was coupled to our in-place scanner for 1D UPC and EAN barcodes. The scanner receives from the DOG algorithm the rectangular planar dimensions of a connected component and the component’s dominant gradient orientation angle referred to as the skew angle. The scanner draws several scan lines at that skew angle within the component to recognize the barcode in place without any rotations. The scanner coupled to the localizer was tested on the same corpus of 7,545 images. Laboratory experiments indicate that the system can localize and scan barcodes of any orientation in the yaw plane, of up to 73.28 degrees in the pitch plane, and of up to 55.5 degrees in the roll plane. The videos have been made public for all interested research communities to replicate our findings or to use them in their own research. The front end Android application is available for free download at Google Play under the title of NutriGlass. This module is also coupled to a comprehensive NL database from which nutritional information can be retrieved on demand. Currently our NL database consists of more than 230,000 products. The second module of PNUTS is an algorithm whose objective is to determine the text skew angle of an NL image without constraining the angle’s magnitude. The horizontal, vertical, and diagonal matrices of the (Two Dimensional) 2D Haar Wavelet Transform are used to identify 2D points with significant intensity changes. The set of points is bounded with a minimum area rectangle whose rotation angle is the text’s skew. The algorithm’s performance is compared with the performance of five text skew detection algorithms on 1001 U.S. nutrition label images and 2200 single- and multi-column document images in multiple languages. To ensure the reproducibility of the reported results, the source code of the algorithm and the image data have been made publicly available. If the skew angle is estimated correctly, optical character recognition (OCR) techniques can be used to extract nutrition information

    Biometrics

    Get PDF
    Biometrics-Unique and Diverse Applications in Nature, Science, and Technology provides a unique sampling of the diverse ways in which biometrics is integrated into our lives and our technology. From time immemorial, we as humans have been intrigued by, perplexed by, and entertained by observing and analyzing ourselves and the natural world around us. Science and technology have evolved to a point where we can empirically record a measure of a biological or behavioral feature and use it for recognizing patterns, trends, and or discrete phenomena, such as individuals' and this is what biometrics is all about. Understanding some of the ways in which we use biometrics and for what specific purposes is what this book is all about

    Geometric, Semantic, and System-Level Scene Understanding for Improved Construction and Operation of the Built Environment

    Full text link
    Recent advances in robotics and enabling fields such as computer vision, deep learning, and low-latency data passing offer significant potential for developing efficient and low-cost solutions for improved construction and operation of the built environment. Examples of such potential solutions include the introduction of automation in environment monitoring, infrastructure inspections, asset management, and building performance analyses. In an effort to advance the fundamental computational building blocks for such applications, this dissertation explored three categories of scene understanding capabilities: 1) Localization and mapping for geometric scene understanding that enables a mobile agent (e.g., robot) to locate itself in an environment, map the geometry of the environment, and navigate through it; 2) Object recognition for semantic scene understanding that allows for automatic asset information extraction for asset tracking and resource management; 3) Distributed coupling analysis for system-level scene understanding that allows for discovery of interdependencies between different built-environment processes for system-level performance analyses and response-planning. First, this dissertation advanced Simultaneous Localization and Mapping (SLAM) techniques for convenient and low-cost locating capabilities compared with previous work. To provide a versatile Real-Time Location System (RTLS), an occupancy grid mapping enhanced visual SLAM (vSLAM) was developed to support path planning and continuous navigation that cannot be implemented directly on vSLAM’s original feature map. The system’s localization accuracy was experimentally evaluated with a set of visual landmarks. The achieved marker position measurement accuracy ranges from 0.039m to 0.186m, proving the method’s feasibility and applicability in providing real-time localization for a wide range of applications. In addition, a Self-Adaptive Feature Transform (SAFT) was proposed to improve such an RTLS’s robustness in challenging environments. As an example implementation, the SAFT descriptor was implemented with a learning-based descriptor and integrated into a vSLAM for experimentation. The evaluation results on two public datasets proved the feasibility and effectiveness of SAFT in improving the matching performance of learning-based descriptors for locating applications. Second, this dissertation explored vision-based 1D barcode marker extraction for automated object recognition and asset tracking that is more convenient and efficient than the traditional methods of using barcode or asset scanners. As an example application in inventory management, a 1D barcode extraction framework was designed to extract 1D barcodes from video scan of a built environment. The performance of the framework was evaluated with video scan data collected from an active logistics warehouse near Detroit Metropolitan Airport (DTW), demonstrating its applicability in automating inventory tracking and management applications. Finally, this dissertation explored distributed coupling analysis for understanding interdependencies between processes affecting the built environment and its occupants, allowing for accurate performance and response analyses compared with previous research. In this research, a Lightweight Communications and Marshalling (LCM)-based distributed coupling analysis framework and a message wrapper were designed. This proposed framework and message wrapper were tested with analysis models from wind engineering and structural engineering, where they demonstrated the abilities to link analysis models from different domains and reveal key interdependencies between the involved built-environment processes.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155042/1/lichaox_1.pd

    Enhanced Quality of Experience Based on Enriched Network Centric and Access Control Mechanisms

    Get PDF
    In the digital world service provisioning in user satisfying quality has become the goal of any content or network provider. Besides having satisfied and therefore, loyal users, the creation of sustainable revenue streams is the most important issue for network operators [1], [2], [3]. The motivation of this work is to enhance the quality of experience of users when they connect to the Internet, request application services as well as to maintain full service when these users are on the move in WLAN based access networks. In this context, the aspect of additional revenue creation for network operators is considered as well. The enhancements presented in this work are based on enriched network centric and access control mechanisms which will be achieved in three different areas of networks capabilities, namely the network performance, the network access and the network features themselves. In the area of network performance a novel authentication and authorisation method is introduced which overcomes the drawback of long authentication time in the handover procedure as required by the generic IEEE 802.1X process using the EAP-TLS method. The novel sequential authentication solution reduces the communication interruption time in a WLAN handover process of currently several hundred milliseconds to some milliseconds by combining the WPA2 PSK and the WPA2 EAP-TLS. In the area of usability a new user-friendly hotspot registration and login mechanisms is presented which significantly simplifies how users obtain WLAN hotspot login credentials and logon to a hotspot. This novel barcode initiated hotspot auto-login solution obtains user credentials through a simple SMS and performs an auto-login process that avoids the need to enter user name and password on the login page manually. In the area of network features a new system is proposed which overcomes the drawback that users are not aware of the quality in which a service can be provided prior to starting the service. This novel graceful denial of service solution informs the user about the expected application service quality before the application service is started

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care

    Inventory management of the refrigerator\u27s produce bins using classification algorithms and hand analysis.

    Get PDF
    Tracking the inventory of one’s refrigerator has been a mission for consumers since the advent of the refrigerator. With the improvement of computer vision capabilities, automatic inventory systems are within reach. One inventory area with many potential benefits is the fresh food produce bins. The bins are a unique storage area due to their deep size. A user cannot easily see what is in the bins without opening the drawer. Produce items are also some of the quickest foods in the refrigerator to spoil, despite being temperature and humidity controlled to have the fruits and vegetables last longer. Allowing the consumer to have a list of items in their bins could ultimately lead to a more informed consumer and less food spoilage. A single camera could identify items by making predictions when the bins are open, but the camera would only be able to “see” the top layer of produce. If one could combine the data from the open bins with information from the user as they placed and removed items, it is hypothesized that a comprehensive produce bin inventory could be created. This thesis addresses the challenges presented by getting a full inventory of all items within the produce bins by observing if the hand can provide useful information. The thesis proposes that all items must go in or out of the refrigerator by the main door, and by using a single camera to observe the hand-object interactions, a more complete inventory list can be created. The work conducted for this hand analysis study consists of three main parts. The first was to create a model that could identify hands within the refrigerator. The model needed to be robust enough to detect different hand sizes, colors, orientations, and partially-occluded hands. The accuracy of the model was determined by comparing ground truth detections for 185 new images to the model versus the detections made by the model. The model was 93% accurate. The second was to track the hand and determine if it was moving in or out of the refrigerator. The tracker needed to record the coordinates of the hands to provide useful information on consumer behavior and to determine where items are placed. The accuracy of the tracker was determined by visual inspection. The final part was to analyze the detected hand to determine if it is holding a type of produce or empty, and track if the produce is added or removed from the refrigerator. As an initial proof-of-concept, a two types of produce, an apple and an orange, will be used as a testing ground. The accuracy of the hand analysis (e.g., hand with apple or orange vs. hand empty) was determined by comparing its output to a 301-frame video with ground truth labels. The hand analysis system was 87% accurate classifying an empty hand, 85% accurate on a hand holding an apple, and 74% accurate on a hand holding an orange. The system was 93% accurate at detecting what was added or removed from the refrigerator, and 100% accurate determining where within the refrigerator the item was added or removed

    The 9th Conference of PhD Students in Computer Science

    Get PDF

    Computer vision in target pursuit using a UAV

    Get PDF
    Research in target pursuit using Unmanned Aerial Vehicle (UAV) has gained attention in recent years, this is primarily due to decrease in cost and increase in demand of small UAVs in many sectors. In computer vision, target pursuit is a complex problem as it involves the solving of many sub-problems which are typically concerned with the detection, tracking and following of the object of interest. At present, the majority of related existing methods are developed using computer simulation with the assumption of ideal environmental factors, while the remaining few practical methods are mainly developed to track and follow simple objects that contain monochromatic colours with very little texture variances. Current research in this topic is lacking of practical vision based approaches. Thus the aim of this research is to fill the gap by developing a real-time algorithm capable of following a person continuously given only a photo input. As this research considers the whole procedure as an autonomous system, therefore the drone is activated automatically upon receiving a photo of a person through Wi-Fi. This means that the whole system can be triggered by simply emailing a single photo from any device anywhere. This is done by first implementing image fetching to automatically connect to WIFI, download the image and decode it. Then, human detection is performed to extract the template from the upper body of the person, the intended target is acquired using both human detection and template matching. Finally, target pursuit is achieved by tracking the template continuously while sending the motion commands to the drone. In the target pursuit system, the detection is mainly accomplished using a proposed human detection method that is capable of detecting, extracting and segmenting the human body figure robustly from the background without prior training. This involves detecting face, head and shoulder separately, mainly using gradient maps. While the tracking is mainly accomplished using a proposed generic and non-learning template matching method, this involves combining intensity template matching with colour histogram model and employing a three-tier system for template management. A flight controller is also developed, it supports three types of controls: keyboard, mouse and text messages. Furthermore, the drone is programmed with three different modes: standby, sentry and search. To improve the detection and tracking of colour objects, this research has also proposed several colour related methods. One of them is a colour model for colour detection which consists of three colour components: hue, purity and brightness. Hue represents the colour angle, purity represents the colourfulness and brightness represents intensity. It can be represented in three different geometric shapes: sphere, hemisphere and cylinder, each of these shapes also contains two variations. Experimental results have shown that the target pursuit algorithm is capable of identifying and following the target person robustly given only a photo input. This can be evidenced by the live tracking and mapping of the intended targets with different clothing in both indoor and outdoor environments. Additionally, the various methods developed in this research could enhance the performance of practical vision based applications especially in detecting and tracking of objects
    • …
    corecore