9,858 research outputs found

    Linear Block Coding for Efficient Beam Discovery in Millimeter Wave Communication Networks

    Full text link
    The surge in mobile broadband data demands is expected to surpass the available spectrum capacity below 6 GHz. This expectation has prompted the exploration of millimeter wave (mm-wave) frequency bands as a candidate technology for next generation wireless networks. However, numerous challenges to deploying mm-wave communication systems, including channel estimation, need to be met before practical deployments are possible. This work addresses the mm-wave channel estimation problem and treats it as a beam discovery problem in which locating beams with strong path reflectors is analogous to locating errors in linear block codes. We show that a significantly small number of measurements (compared to the original dimensions of the channel matrix) is sufficient to reliably estimate the channel. We also show that this can be achieved using a simple and energy-efficient transceiver architecture.Comment: To appear in the proceedings of IEEE INFOCOM '1

    Network Code Design for Orthogonal Two-hop Network with Broadcasting Relay: A Joint Source-Channel-Network Coding Approach

    Full text link
    This paper addresses network code design for robust transmission of sources over an orthogonal two-hop wireless network with a broadcasting relay. The network consists of multiple sources and destinations in which each destination, benefiting the relay signal, intends to decode a subset of the sources. Two special instances of this network are orthogonal broadcast relay channel and the orthogonal multiple access relay channel. The focus is on complexity constrained scenarios, e.g., for wireless sensor networks, where channel coding is practically imperfect. Taking a source-channel and network coding approach, we design the network code (mapping) at the relay such that the average reconstruction distortion at the destinations is minimized. To this end, by decomposing the distortion into its components, an efficient design algorithm is proposed. The resulting network code is nonlinear and substantially outperforms the best performing linear network code. A motivating formulation of a family of structured nonlinear network codes is also presented. Numerical results and comparison with linear network coding at the relay and the corresponding distortion-power bound demonstrate the effectiveness of the proposed schemes and a promising research direction.Comment: 27 pages, 9 figures, Submited to IEEE Transaction on Communicatio
    • …
    corecore