170 research outputs found

    Circuit simulation using distributed waveform relaxation techniques

    Get PDF
    Simulation plays an important role in the design of integrated circuits. Due to high costs and large delays involved in their fabrication, simulation is commonly used to verify functionality and to predict performance before fabrication. This thesis describes analysis, implementation and performance evaluation of a distributed memory parallel waveform relaxation technique for the electrical circuit simulation of MOS VLSI circuits. The waveform relaxation technique exhibits inherent parallelism due to the partitioning of a circuit into a number of sub-circuits. These subcircuits can be concurrently simulated on parallel processors. Different forms of parallelism in the direct method and the waveform relaxation technique are studied. An analysis of single queue and distributed queue approaches to implement parallel waveform relaxation on distributed memory machines is performed and their performance implications are studied. The distributed queue approach selected for exploiting the coarse grain parallelism across sub-circuits is described. Parallel waveform relaxation programs based on Gauss-Seidel and Gauss-Jacobi techniques are implemented using a network of eight Transputers. Static and dynamic load balancing strategies are studied. A dynamic load balancing algorithm is developed and implemented. Results of parallel implementation are analyzed to identify sources of bottlenecks. This thesis has demonstrated the applicability of a low cost distributed memory multi-computer system for simulation of MOS VLSI circuits. Speed-up measurements prove that a five times improvement in the speed of calculations can be achieved using a full window parallel Gauss-Jacobi waveform relaxation algorithm. Analysis of overheads shows that load imbalance is the major source of overhead and that the fraction of the computation which must be performed sequentially is very low. Communication overhead depends on the nature of the parallel architecture and the design of communication mechanisms. The run-time environment (parallel processing framework) developed in this research exploits features of the Transputer architecture to reduce the effect of the communication overhead by effectively overlapping computation with communications, and running communications processes at a higher priority. This research will contribute to the development of low cost, high performance workstations for computer-aided design and analysis of VLSI circuits

    Krylov's methods in function space for waveform relaxation.

    Get PDF
    by Wai-Shing Luk.Thesis (Ph.D.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 104-113).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Functional Extension of Iterative Methods --- p.2Chapter 1.2 --- Applications in Circuit Simulation --- p.2Chapter 1.3 --- Multigrid Acceleration --- p.3Chapter 1.4 --- Why Hilbert Space? --- p.4Chapter 1.5 --- Parallel Implementation --- p.5Chapter 1.6 --- Domain Decomposition --- p.5Chapter 1.7 --- Contributions of This Thesis --- p.6Chapter 1.8 --- Outlines of the Thesis --- p.7Chapter 2 --- Waveform Relaxation Methods --- p.9Chapter 2.1 --- Basic Idea --- p.10Chapter 2.2 --- Linear Operators between Banach Spaces --- p.14Chapter 2.3 --- Waveform Relaxation Operators for ODE's --- p.16Chapter 2.4 --- Convergence Analysis --- p.19Chapter 2.4.1 --- Continuous-time Convergence Analysis --- p.20Chapter 2.4.2 --- Discrete-time Convergence Analysis --- p.21Chapter 2.5 --- Further references --- p.24Chapter 3 --- Waveform Krylov Subspace Methods --- p.25Chapter 3.1 --- Overview of Krylov Subspace Methods --- p.26Chapter 3.2 --- Krylov Subspace methods in Hilbert Space --- p.30Chapter 3.3 --- Waveform Krylov Subspace Methods --- p.31Chapter 3.4 --- Adjoint Operator for WBiCG and WQMR --- p.33Chapter 3.5 --- Numerical Experiments --- p.35Chapter 3.5.1 --- Test Circuits --- p.36Chapter 3.5.2 --- Unstructured Grid Problem --- p.39Chapter 4 --- Parallel Implementation Issues --- p.50Chapter 4.1 --- DECmpp 12000/Sx Computer and HPF --- p.50Chapter 4.2 --- Data Mapping Strategy --- p.55Chapter 4.3 --- Sparse Matrix Format --- p.55Chapter 4.4 --- Graph Coloring for Unstructured Grid Problems --- p.57Chapter 5 --- The Use of Inexact ODE Solver in Waveform Methods --- p.61Chapter 5.1 --- Inexact ODE Solver for Waveform Relaxation --- p.62Chapter 5.1.1 --- Convergence Analysis --- p.63Chapter 5.2 --- Inexact ODE Solver for Waveform Krylov Subspace Methods --- p.65Chapter 5.3 --- Experimental Results --- p.68Chapter 5.4 --- Concluding Remarks --- p.72Chapter 6 --- Domain Decomposition Technique --- p.80Chapter 6.1 --- Introduction --- p.80Chapter 6.2 --- Overlapped Schwarz Methods --- p.81Chapter 6.3 --- Numerical Experiments --- p.83Chapter 6.3.1 --- Delay Circuit --- p.83Chapter 6.3.2 --- Unstructured Grid Problem --- p.86Chapter 7 --- Conclusions --- p.90Chapter 7.1 --- Summary --- p.90Chapter 7.2 --- Future Works --- p.92Chapter A --- Pseudo Codes for Waveform Krylov Subspace Methods --- p.94Chapter B --- Overview of Recursive Spectral Bisection Method --- p.101Bibliography --- p.10

    Energy efficient hybrid computing systems using spin devices

    Get PDF
    Emerging spin-devices like magnetic tunnel junctions (MTJ\u27s), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ∼20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode\u27 processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ∼100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters

    Novel Modeling and Simulation Concepts for Power Distribution Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Parallel Algorithms for Time and Frequency Domain Circuit Simulation

    Get PDF
    As a most critical form of pre-silicon verification, transistor-level circuit simulation is an indispensable step before committing to an expensive manufacturing process. However, considering the nature of circuit simulation, it can be computationally expensive, especially for ever-larger transistor circuits with more complex device models. Therefore, it is becoming increasingly desirable to accelerate circuit simulation. On the other hand, the emergence of multi-core machines offers a promising solution to circuit simulation besides the known application of distributed-memory clustered computing platforms, which provides abundant hardware computing resources. This research addresses the limitations of traditional serial circuit simulations and proposes new techniques for both time-domain and frequency-domain parallel circuit simulations. For time-domain simulation, this dissertation presents a parallel transient simulation methodology. This new approach, called WavePipe, exploits coarse-grained application-level parallelism by simultaneously computing circuit solutions at multiple adjacent time points in a way resembling hardware pipelining. There are two embodiments in WavePipe: backward and forward pipelining schemes. While the former creates independent computing tasks that contribute to a larger future time step, the latter performs predictive computing along the forward direction. Unlike existing relaxation methods, WavePipe facilitates parallel circuit simulation without jeopardizing convergence and accuracy. As a coarse-grained parallel approach, it requires low parallel programming effort, furthermore it creates new avenues to have a full utilization of increasingly parallel hardware by going beyond conventional finer grained parallel device model evaluation and matrix solutions. This dissertation also exploits the recently developed explicit telescopic projective integration method for efficient parallel transient circuit simulation by addressing the stability limitation of explicit numerical integration. The new method allows the effective time step controlled by accuracy requirement instead of stability limitation. Therefore, it not only leads to noticeable efficiency improvement, but also lends itself to straightforward parallelization due to its explicit nature. For frequency-domain simulation, this dissertation presents a parallel harmonic balance approach, applicable to the steady-state and envelope-following analyses of both driven and autonomous circuits. The new approach is centered on a naturally-parallelizable preconditioning technique that speeds up the core computation in harmonic balance based analysis. The proposed method facilitates parallel computing via the use of domain knowledge and simplifies parallel programming compared with fine-grained strategies. As a result, favorable runtime speedups are achieved

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Millimeter-Wave CMOS Digitally Controlled Oscillators for Automotive Radars

    Get PDF
    All-Digital-Phase-Locked-Loops (ADPLLs) are ideal for integrated circuit implementations and effectively generate frequency chirps for Frequency-Modulated-Continuous-Wave (FMCW) radar. This dissertation discusses the design requirements for integrated ADPLL, which is used as chirp synthesizer for FMCW automotive radar and focuses on an analysis of the ADPLL performance based on the Digitally-Controlled-Oscillator (DCO) design parameters and the ADPLL configuration. The fundamental principles of the FMCW radar are reviewed and the importance of linear DCO for reliable operation of the synthesizer is discussed. A novel DCO, which achieves linear frequency tuning steps is designed by arranging the available minimum Metal-Oxide-Metal (MoM) capacitor in unique confconfigurations. The DCO prototype fabricated in 65 nm CMOS fullls the requirements of the 77 GHz automotive radar. The resultant linear DCO characterization can effectively drive a chirp generation system in complete FMCW automotive radar synthesizer
    • …
    corecore