155 research outputs found

    Nanoelectronic Design Based on a CNT Nano-Architecture

    Get PDF

    Benchmarking of standard-cell based memories in the sub-VT domain in 65-nm CMOS technology

    Get PDF
    In this paper, standard-cell based memories (SCMs) are proposed as an alternative to full-custom sub-VT SRAM macros for ultra-low-power systems requiring small memory blocks. The energy per memory access as well as the maximum achievable throughput in the sub-VT domain of various SCM architectures are evaluated by means of a gate-level sub-VT characterization model, building on data extracted from fully placed, routed, and back-annotated netlists. The reliable operation at the energy-minimum voltage of the various SCM architectures in a 65-nm CMOS technology considering within-die process parameter variations is demonstrated by means of Monte Carlo circuit simulation. Finally, the energy per memory access, the achievable throughput, and the area of the best SCM architecture are compared to recent sub-VT SRAM designs

    Voltage stacking for near/sub-threshold operation

    Get PDF

    Low Power CMOS Design : Exploring Radiation Tolerance in a 90 nm Low Power Commercial Process

    Get PDF
    This thesis aims to examine radiation tolerance of low power digital CMOS circuits in a commercial 90 nm low power triple-well process from TSMC. By combining supply voltage scaling and Radiation-Hardened By Design (RHBD) design techniques, the goal is to achieve low supply voltage, radiation tolerant, circuit behavior. The target circuit architecture for comparison between different radiation hardening techniques is a Successive Approximation Register (SAR) architecture comprising both combinational and sequential logic. The purpose of the SAR architecture is to emulate a larger system, since larger systems are usually composed of combinational and sequential building blocks. The method used for achieving low power operation is primarily voltage scaling, with the ultimate goal of reaching subthreshold operation, while maintaining radiation tolerant circuit behavior. Radiation hardening is performed on circuit-level by applying RHBD circuit topologies, as well as architectural-level mitigation techniques. This thesis includes three papers within the field of robust low power CMOS design. Two of the papers cover low power level shifter designs in 90 nm and 65 nm process from STMicroelectronics. The third paper examines memory element design using minority-3 gates and inverters for robust low voltage operation. Prototyping has been conducted on low power CMOS building blocks including level shifter and memory design, for potential use in future radiation tolerant designs. Prototyping has been conducted on two chips from two different 90 nm processes from STMicroelectronics and TSMC. A test setup for radiation induced errors has been developed. Experimental radiation tests of the SAR architectures were conducted at SAFE, revealing no radiation induced errors

    Design for Test and Hardware Security Utilizing Tester Authentication Techniques

    Get PDF
    Design-for-Test (DFT) techniques have been developed to improve testability of integrated circuits. Among the known DFT techniques, scan-based testing is considered an efficient solution for digital circuits. However, scan architecture can be exploited to launch a side channel attack. Scan chains can be used to access a cryptographic core inside a system-on-chip to extract critical information such as a private encryption key. For a scan enabled chip, if an attacker is given unlimited access to apply all sorts of inputs to the Circuit-Under-Test (CUT) and observe the outputs, the probability of gaining access to critical information increases. In this thesis, solutions are presented to improve hardware security and protect them against attacks using scan architecture. A solution based on tester authentication is presented in which, the CUT requests the tester to provide a secret code for authentication. The tester authentication circuit limits the access to the scan architecture to known testers. Moreover, in the proposed solution the number of attempts to apply test vectors and observe the results through the scan architecture is limited to make brute-force attacks practically impossible. A tester authentication utilizing a Phase Locked Loop (PLL) to encrypt the operating frequency of both DUT/Tester has also been presented. In this method, the access to the critical security circuits such as crypto-cores are not granted in the test mode. Instead, a built-in self-test method is used in the test mode to protect the circuit against scan-based attacks. Security for new generation of three-dimensional (3D) integrated circuits has been investigated through 3D simulations COMSOL Multiphysics environment. It is shown that the process of wafer thinning for 3D stacked IC integration reduces the leakage current which increases the chip security against side-channel attacks

    Predicting power scalability in a reconfigurable platform

    Get PDF
    This thesis focuses on the evolution of digital hardware systems. A reconfigurable platform is proposed and analysed based on thin-body, fully-depleted silicon-on-insulator Schottky-barrier transistors with metal gates and silicide source/drain (TBFDSBSOI). These offer the potential for simplified processing that will allow them to reach ultimate nanoscale gate dimensions. Technology CAD was used to show that the threshold voltage in TBFDSBSOI devices will be controllable by gate potentials that scale down with the channel dimensions while remaining within appropriate gate reliability limits. SPICE simulations determined that the magnitude of the threshold shift predicted by TCAD software would be sufficient to control the logic configuration of a simple, regular array of these TBFDSBSOI transistors as well as to constrain its overall subthreshold power growth. Using these devices, a reconfigurable platform is proposed based on a regular 6-input, 6-output NOR LUT block in which the logic and configuration functions of the array are mapped onto separate gates of the double-gate device. A new analytic model of the relationship between power (P), area (A) and performance (T) has been developed based on a simple VLSI complexity metric of the form ATσ = constant. As σ defines the performance “return” gained as a result of an increase in area, it also represents a bound on the architectural options available in power-scalable digital systems. This analytic model was used to determine that simple computing functions mapped to the reconfigurable platform will exhibit continuous power-area-performance scaling behavior. A number of simple arithmetic circuits were mapped to the array and their delay and subthreshold leakage analysed over a representative range of supply and threshold voltages, thus determining a worse-case range for the device/circuit-level parameters of the model. Finally, an architectural simulation was built in VHDL-AMS. The frequency scaling described by σ, combined with the device/circuit-level parameters predicts the overall power and performance scaling of parallel architectures mapped to the array

    Subthreshold circuits: Design, implementation and application

    Get PDF
    Digital circuits operating in the subthreshold region of the transistor are being used as an ideal option for ultra low power complementary metal-oxide-semiconductor (CMOS) design. The use of subthreshold circuit design in cryptographic systems is gaining importance as a counter measure to power analysis attacks. A power analysis attack is a non-invasive side channel attack in which the power consumption of the cryptographic system can be analyzed to retrieve the encrypted data. A number of techniques to increase the resistance to power attacks have been proposed at algorithmic and hardware levels, but these techniques suffer from large area and power overheads. The main aim of this research is to understand the viability of implementing subthreshold systems for cryptographic applications. Standard cell libraries in subthreshold are designed and a methodology to identify the minimum energy point, aspect ratio, frequency range and operating voltage for CMOS standard cells is defined. As scalar multiplication is the fundamental operation in elliptic curve cryptographic systems, a digit-level gaussian normal basis (GNB) multiplier is implemented using the aforementioned standard cells. A similar standard-cell library is designed for the multiplier to operate in the superthreshold regime. The subthreshold and superthreshold multipliers are then subjected to a differential power analysis attack. Power performance and signal-to-noise ratio (SNR) of both these systems are compared to evaluate the usefulness of the subthreshold design. The power consumption of the subthreshold multiplier is 4.554 uW, the speed of the multiplier is 65.1 KHz and the SNR is 40 dB. The superthreshold multiplier has a power consumption of 4.005 mW, the speed of the multiplier is 330 MHz and the SNR is 200 dB. Reduced power consumption, hence reduced SNR, increases the resistance of the subthreshold multiplier against power analysis attacks. (Refer to PDF for exact formulas)
    • 

    corecore