144 research outputs found

    Robust Transmit Designs for Secrecy Rate Constrained MISO NOMA System

    Get PDF
    This paper studies the secure transmission for downlink multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) system in which imperfect channel state information (CSI) of the eavesdropper links is considered. We propose the novel robust beamforming strategies for the direct transmission NOMA (DT NOMA) and cooperative jamming NOMA (CJ NOMA) with a helper. We formulate our problem as the worst-case sum power minimization subject to secrecy rate constraint. The semidefinite relaxation (SDR) method is firstly applied to relax the quadratic terms and rank-one optimality is proved. Then an iterative algorithm based on successive convex approximation (SCA) is proposed to transform the nonconvex problem into convex approximations. Simulation results show that both the proposed NOMA schemes outperform the orthogonal multiple scheme, and CJ NOMA scheme can achieve much better system performance gain than DT NOMA scheme

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Efficient and Secure Resource Allocation in Mobile Edge Computing Enabled Wireless Networks

    Get PDF
    To support emerging applications such as autonomous vehicles and smart homes and to build an intelligent society, the next-generation internet of things (IoT) is calling for up to 50 billion devices connected world wide. Massive devices connection, explosive data circulation, and colossal data processing demand are driving both the industry and academia to explore new solutions. Uploading this vast amount of data to the cloud center for processing will significantly increase the load on backbone networks and cause relatively long latency to time-sensitive applications. A practical solution is to deploy the computing resource closer to end-users to process the distributed data. Hence, Mobile Edge Computing (MEC) emerged as a promising solution to providing high-speed data processing service with low latency. However, the implementation of MEC networks is handicapped by various challenges. For one thing, to serve massive IoT devices, dense deployment of edge servers will consume much more energy. For another, uploading sensitive user data through a wireless link intro-duces potential risks, especially for those size-limited IoT devices that cannot implement complicated encryption techniques. This dissertation investigates problems related to Energy Efficiency (EE) and Physical Layer Security (PLS) in MEC-enabled IoT networks and how Non-Orthogonal Multiple Access (NOMA), prediction-based server coordination, and Intelligent Reflecting Surface (IRS) can be used to mitigate them. Employing a new spectrum access method can help achieve greater speed with less power consumption, therefore increasing system EE. We first investigated NOMA-assisted MEC networks and verified that the EE performance could be significantly improved. Idle servers can consume unnecessary power. Proactive server coordination can help relieve the tension of increased energy consumption in MEC systems. Our next step was to employ advanced machine learning algorithms to predict data workload at the server end and adaptively adjust the system configuration over time, thus reducing the accumulated system cost. We then introduced the PLS to our system and investigated the long-term secure EE performance of the MEC-enabled IoT network with NOMA assistance. It has shown that NOMA can improve both EE and PLS for the network. Finally, we switch from the single antenna scenario to a multiple-input single-output (MISO) system to exploit space diversity and beam forming techniques in mmWave communication. IRS can be used simultaneously to help relieve the pathloss and reconfigure multi-path links. In the final part, we first investigated the secure EE performance of IRS-assisted MISO networks and introduced a friendly jammer to block the eavesdroppers and improve the PLS rate. We then combined the IRS with the NOMA in the MEC network and showed that the IRS can further enhance the system EE

    Transmitter Optimization Techniques for Physical Layer Security

    Get PDF
    Information security is one of the most critical issues in wireless networks as the signals transmitted through wireless medium are more vulnerable for interception. Although the existing conventional security techniques are proven to be safe, the broadcast nature of wireless communications introduces different challenges in terms of key exchange and distributions. As a result, information theoretic physical layer security has been proposed to complement the conventional security techniques for enhancing security in wireless transmissions. On the other hand, the rapid growth of data rates introduces different challenges on power limited mobile devices in terms of energy requirements. Recently, research work on wireless power transfer claimed that it has been considered as a potential technique to extend the battery lifetime of wireless networks. However, the algorithms developed based on the conventional optimization approaches often require iterative techniques, which poses challenges for real-time processing. To meet the demanding requirements of future ultra-low latency and reliable networks, neural network (NN) based approach can be employed to determine the resource allocations in wireless communications. This thesis developed different transmission strategies for secure transmission in wireless communications. Firstly, transmitter designs are focused in a multiple-input single-output simultaneous wireless information and power transfer system with unknown eavesdroppers. To improve the performance of physical layer security and the harvested energy, artificial noise is incorporated into the network to mask the secret information between the legitimate terminals. Then, different secrecy energy efficiency designs are considered for a MISO underlay cognitive radio network, in the presence of an energy harvesting receiver. In particular, these designs are developed with different channel state information assumptions at the transmitter. Finally, two different power allocation designs are investigated for a cognitive radio network to maximize the secrecy rate of the secondary receiver: conventional convex optimization framework and NN based algorithm
    • …
    corecore