16,113 research outputs found

    Robust routing under dynamic traffic demands

    Get PDF
    In order to provide service reliability with reasonable quality, it is essential for the network operator to manage the traffic flows in the core network. Managing traffic in the network is performed as routing function. In the traditional traffic management, network operator can tune routing parameters to simply manage the traffic. But traditional routing methods are not designed to handle the sudden fluctuations in the traffic. As a result, this may apparently lead to the traffic congestions in some parts of the core network, leaving other part underutilized. In this thesis we explore issues related to the routing robustness in the face of traffic demand variations. We investigate different routing methods for efficient routing using maximum link utilization (MLU) as a performance metric. The primary advantage of using link utilization is its ease to compute the network performance on real network data and synthetic data. Overloaded links might result in Quality of Service degradation (e.g. larger packet delay, packet losses etc.), so MLU might be a useful measure of network performance. For the experimentation, we have used unique data from the real operational network available in the public domain and the random data for large network topology instances. Furthermore, we propose a simple routing algorithm called Robust Routing Technique (RRT) to implement a robust routing mechanism. This mechanism allows network operator to satisfy the networking goals such as load balancing, routing robustness to the range of traffic demand matrices, link failures or to the traffic changes caused by uncertain traffic demands. Simulation experiments with real network topologies and random topologies demonstrate that our routing solution is simple (for routing) and flexible (for forwarding). K-Shortest path implementation in RRT can be extended for Multi Protocol Label Switching. Finally, we evaluate the performance of robust routing under dynamic traffic demands. We formulate the problem as a multi commodity flow problem using linear programming. We use congestion ratio to define the robust routing performance. We provide a variant to the existing robust routing mechanisms by modelling traffic demand due to Distributed Denial of service attacks or worms. Simulation results are compared with the popular OSPF traffic engineering algorithm to provide effectiveness to the proposed routing scheme. Simulation results are compared with the popular OSPF traffic engineering algorithm to provide effectiveness to the proposed routing scheme

    Traffic engineering in ambient networks: challenges and approaches

    Get PDF
    The focus of this paper is on traffic engineering in ambient networks. We describe and categorize different alternatives for making the routing more adaptive to the current traffic situation and discuss the challenges that ambient networks pose on traffic engineering methods. One of the main objectives of traffic engineering is to avoid congestion by controlling and optimising the routing function, or in short, to put the traffic where the capacity is. The main challenge for traffic engineering in ambient networks is to cope with the dynamics of both topology and traffic demands. Mechanisms are needed that can handle traffic load dynamics in scenarios with sudden changes in traffic demand and dynamically distribute traffic to benefit from available resources. Trade-offs between optimality, stability and signaling overhead that are important for traffic engineering methods in the fixed Internet becomes even more critical in a dynamic ambient environment

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Traffic engineering eye diagram

    Get PDF
    It is said that a picture is worth a thousand words - this statement also applies to networking topics. Thus, to effectively monitor network performance we need tools which present the performance metrics in a graphical way which is also clear and informative. We propose a tool for this purpose which we call the traffic engineering eye diagram (TEED). Eye diagrams are used in digital communications to analyse the quality of a digital signal; the TEED can similarly he used in the traffic engineering field to analyse the load balancing ability of a TE algorithm. In this paper we describe how to create such TEEDs and how to use them to analyse and compare various traffic engineering approaches
    corecore