51,803 research outputs found

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    Robustness analysis of a nucleic acid controller for a dynamic biomolecular process using the structured singular value

    Get PDF
    In the field of synthetic biology, theoretical frameworks and software tools are now available that allow control systems represented as chemical reaction networks to be translated directly into nucleic acid-based chemistry, and hence implement embedded control circuitry for biomolecular processes. However, the development of tools for analysing the robustness of such controllers is still in its infancy. An interesting feature of such control circuits is that, although the transfer function of a linear system can be easily implemented via a chemical network of catalysis, degradation and annihilation reactions, this introduces additional nonlinear dynamics, due to the annihilation kinetics. We exemplify this problem for a dynamical biomolecular feedback system, and demonstrate how the structured singular value (μ) analysis framework can be extended to rigorously analyse the robustness of this class of system. We show that parametric uncertainty in the system affects the location of its equilibrium, and that this must be taken into account in the analysis. We also show that the parameterisation of the system can be scaled for experimental feasibility without affecting its robustness properties, and that a statistical analysis via Monte Carlo simulation fails to uncover the worst-case uncertainty combination found by μ-analysis.</p
    corecore