12,396 research outputs found

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    Automatic detection, tracking and counting of birds in marine video content

    Get PDF
    Robust automatic detection of moving objects in a marine context is a multi-faceted problem due to the complexity of the observed scene. The dynamic nature of the sea caused by waves, boat wakes, and weather conditions poses huge challenges for the development of a stable background model. Moreover, camera motion, reflections, lightning and illumination changes may contribute to false detections. Dynamic background subtraction (DBGS) is widely considered as a solution to tackle this issue in the scope of vessel detection for maritime traffic analysis. In this paper, the DBGS techniques suggested for ships are investigated and optimized for the monitoring and tracking of birds in marine video content. In addition to background subtraction, foreground candidates are filtered by a classifier based on their feature descriptors in order to remove non-bird objects. Different types of classifiers have been evaluated and results on a ground truth labeled dataset of challenging video fragments show similar levels of precision and recall of about 95% for the best performing classifier. The remaining foreground items are counted and birds are tracked along the video sequence using spatio-temporal motion prediction. This allows marine scientists to study the presence and behavior of birds

    Binary object recognition system on FPGA with bSOM

    Get PDF
    Tri-state Self Organizing Map (bSOM), which takes binary inputs and maintains tri-state weights, has been used for classification rather than clustering in this paper. The major contribution here is the demonstration of the potential use of the modified bSOM in security surveillance, as a recognition system on FPGA
    corecore